导航:首页 > 不锈钢板 > 精铸不锈钢如何加氮

精铸不锈钢如何加氮

发布时间:2023-01-12 01:38:31

1. 不锈钢应该怎样氮化处理

氮化处理是指一种在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。经氮化处理的制品具有优异的耐磨性、耐疲劳性、耐蚀性及耐高温的特性。
简介
传统的合金钢料中之铝、铬、钒及钼元素对渗氮甚有帮助。这些元素在渗氮温度中,与初生态的氮原子接触时,就生成安定的氮化物。尤其是钼元素,不仅作为生成氮化物元素,亦作为降低在渗氮温度时所发生的脆性。其他合金钢中的元素,如镍、铜、硅、锰等,对渗氮特性并无多大的帮助。一般而言,如果钢料中含有一种或多种的氮化物生成元素,氮化后的效果比较良好。其中铝是最强的氮化物元素,含有0.85~1.5%铝的渗氮结果最佳。在含铬的铬钢而言,如果有足够的含量,亦可得到很好的效果。但没有含合金的碳钢,因其生成的渗氮层很脆,容易剥落,不适合作为渗氮钢。
一般常用的渗氮钢有六种如下:
(1)含铝元素的低合金钢(标准渗氮钢)
(2)含铬元素的中碳低合金钢 SAE 4100,4300,5100,6100,8600,8700,9800系。
(3)热作模具钢(含约5%之铬) SAE H11 (SKD – 61)H12,H13
(4)铁素体及马氏体系不锈钢 SAE 400系
(5)奥氏体系不锈钢 SAE 300系
(6)析出硬化型不锈钢 17 - 4PH,17 – 7PH,A – 286等
含铝的标准渗氮钢,在氮化后虽可得到很高的硬度及高耐磨的表层,但其硬化层亦很脆。相反的,含铬的低合金钢硬度较低,但硬化层即比较有韧性,其表面亦有相当的耐磨性及耐束心性。因此选用材料时,宜注意材料之特征,充分利用其优点,俾符合零件之功能。至于工具钢如H11(SKD61)D2(SKD – 11),即有高表面硬度及高心部强度。
技术流程
渗氮前的零件表面清洗
大部分零件,可以使用气体去油法去油后立刻渗氮。部分零件也需要用汽油清洗比较好,但在渗氮前之最后加工方法若采用抛光、研磨、磨光等,即可能产生阻碍渗氮的表面层,致使渗氮后,氮化层不均匀或发生弯曲等缺陷。此时宜采用下列二种方法之一去除表面层。第一种方法在渗氮前首先以气体去油。然后使用氧化铝粉将表面作abrasive cleaning 。第二种方法即将表面加以磷酸皮膜处理(phosphate coating)。
渗氮炉的排除空气
将被处理零件置于渗氮炉中,并将炉盖密封后即可加热,但加热至150℃以前须作炉内排除空气工作。
排除炉内的主要功用是防止氨气分解时与空气接触而发生爆炸性气体,及防止被处理物及支架的表面氧化。其所使用的气体即有氨气及氮气二种。
排除炉内空气的要领如下:
①被处理零件装妥后将炉盖封好,开始通无水氨气,其流量尽量可能多。
②将加热炉之自动温度控制设定在150℃并开始加热(注意炉温不能高于150℃)。
③炉中之空气排除至10%以下,或排出之气体含90%以上之NH3时,再将炉温升高至渗氮温度。
氨的分解率
渗氮是铺及其他合金元素与初生态的氮接触而进行,但初生态氮的产生,即因氨气与加热中的钢料接触时钢料本身成为触媒而促进氨之分解。
虽然在各种分解率的氨气下,皆可渗氮,但一般皆采用15~30%的分解率,并按渗氮所需厚度至少保持4~10小时,处理温度即保持在520℃左右。
冷却
大部份的工业用渗氮炉皆具有热交换机,以期在渗氮工作完成后加以急速冷却加热炉及被处理零件。即渗氮完成后,将加热电源关闭,使炉温降低约50℃,然后将氨的流量增加一倍后开始启开热交换机。此时须注意观察接在排气管上玻璃瓶中,是否有气泡溢出,以确认炉内之正压。等候导入炉中的氨气安定后,即可减少氨的流量至保持炉中正压为止。当炉温下降至150℃以下时,即使用前面所述之排除炉内气体法,导入空气或氮气后方可启开炉盖。
气体氮化
气体氮化系于1923年由德国AF ry 所发表,将工件置于炉内,利NH3气直接输进500~550℃的氮化炉内,保持20~100小时,使NH3气分解为原子状态的(N)气与(H)气而进行渗氮处理,在使钢的表面产生耐磨、耐腐蚀之化合物层为主要目的,其厚度约为0.02~0.02m/m,其性质极硬Hv 1000~1200,又极脆,NH3之分解率视流量的大小与温度的高低而有所改变,流量愈大则分解度愈低,流量愈小则分解率愈高,温度愈高分解率愈高,温度愈低分解率亦愈低,NH3气在570℃时经热分解如下:
NH3 →〔N〕Fe + 3/2 H2
经分解出来的N,随而扩散进入钢的表面形成。相的Fe2 - 3N气体渗氮,一般缺点为硬化层薄而氮化处理时间长。
气体氮化因分解NH3进行渗氮效率低,故一般均固定选用适用于氮化之钢种,如含有Al,Cr,Mo等氮化元素,否则氮化几无法进行,一般使用有JIS、SACM1新JIS、SACM645及SKD61以强韧化处理又称调质因Al,Cr,Mo等皆为提高变态点温度之元素,故淬火温度高,回火温度亦较普通之构造用合金钢高,此乃在氮化温度长时间加热之间,发生回火脆性,故预先施以调质强韧化处理。NH3气体氮化,因为时间长表面粗糙,硬而较脆不易研磨,而且时间长不经济,用于塑胶射出形机的送料管及螺旋杆的氮化。
液体氮化
液体软氮化主要不同是在氮化层里之有Fe3Nε相,Fe4Nr相存在而不含Fe2Nξ相氮化物,ξ相化合物硬脆在氮化处理上是不良于韧性的氮化物,液体软氮化的方法是将被处理工件,先除锈,脱脂,预热后再置于氮化坩埚内,坩埚内是以TF – 1为主盐剂,被加温到560~600℃处理数分至数小时,依工件所受外力负荷大小,而决定氮化层深度,在处理中,必须在坩埚底部通入一支空气管以一定量之空气氮化盐剂分解为CN或CNO,渗透扩散至工作表面,使工件表面最外层化合物8~9%wt的N及少量的C及扩散层,氮原子扩散入α – Fe基地中使钢件更具耐疲劳性,氮化期间由于CNO之分解消耗,所以不断要在6~8小时处理中化验盐剂成份,以便调整空气量或加入新的盐剂。
液体软氮化处理用的材料为铁金属,氮化后的表面硬度以含有 Al,Cr,Mo,Ti元素者硬度较高,而其含金量愈多而氮化深度愈浅,如炭素钢Hv 350~650,不锈钢Hv 1000~1200,氮化钢Hv 800~1100。
液体软氮化适用于耐磨及耐疲劳等汽车零件,缝衣机、照相机等如气缸套处理,气门阀处理、活塞筒处理及不易变形的模具处。采用液体软氮化的国家,西欧各国、美国、苏俄、日本。
离子氮化
此一方法为将一工件放置于氮化炉内,预先将炉内抽成真空达10-2~10-3 Torr(㎜Hg)后导入N2气体或N2 + H2之混合气体,调整炉内达1~10 Torr,将炉体接上阳极,工件接上阴极,两极间通以数百伏之直流电压,此时炉内之N2气体则发生光辉放电成正离子,向工作表面移动,在瞬间阴极电压急剧下降,使正离子以高速冲向阴极表面,将动能转变为气能,使得工件表面温度得以上升,因氮离子的冲击后将工件表面打出Fe.C.O.等元素飞溅出来与氮离子结合成FeN,由此氮化铁逐渐被吸附在工件上而产生氮化作用,离子氮化在基本上是采用氮气,但若添加碳化氢系气体则可作离子软氮化处理,但一般统称离子氮化处理,工件表面氮气浓度可改变炉内充填的混合气体(N2 + H2)的分压比调节得之,纯离子氮化时,在工作表面得单相的r′(Fe4N)组织含N量在5.7~6.1%wt,厚层在10μn以内,此化合物层强韧而非多孔质层,不易脱落,由于氮化铁不断的被工件吸附并扩散至内部,由表面至内部的组织即为FeN → Fe2N → Fe3N→ Fe4N顺序变化,单相ε(Fe3N)含N量在5.7~11.0%wt,单相ξ(Fe2N)含N量在11.0~11.35%wt,离子氮化首先生成r相再添加碳化氢气系时使其变成ε相之化合物层与扩散层,由于扩散层的增加对疲劳强度的增加有很多助。而蚀性以ε相最佳。
离子氮化处理的度可从350℃开始,由于考虑到材质及其相关机械性质的选用处理时间可由数分钟以致于长时间的处理,本法与过去利用热分解方化学反应而氮化的处理法不同,本法系利用高离子能之故,过去认为难处理的不锈钢、钛、钴等材料也能简单的施以优秀的表面硬化处理

2. 不锈钢的氮化方法有哪些

不锈钢的氮化方法有哪些
用O-N共渗代替发蓝用渗碳炉,温度为400——420摄氏度X90min,通入氨气350L/h,同时滴入80——100did/min甲醇,废气排到室外或同入水中,零件通过处理后表面呈现均匀的深蓝色,抗腐蚀能力优于发蓝处理。
硬度计和锉刀和表面硬度的关系锉刀可检查残余奥氏体的原理在于:马氏体处于比残余奥氏体处于膨胀的状态,所以马氏体总是凸起在奥氏体的状态,而奥氏体处于凹的状态。可以说马氏体是分布在奥氏体的基体上。锉刀只是接触到马氏体,用硬度计检查硬度时接触的却是接触马氏体和奥氏体,当锉刀和硬度计检查的硬度相差越大时残余奥氏体也就越多。
不锈钢的氮化方法关键在于去除其钝化膜,钝化膜是不锈钢防锈和不能氮化的原因所在,所以要使不锈钢氮化,关键是去除表面的钝化膜。不锈钢氮化的目的在于提高其硬度,提高其耐摩性和抗侵蚀能力。去除钝化膜的方法有化学法和机械法,化学法是把工件泡在50%(体积)盐酸(温度70度)中,然后用水清洗干净;机械法可以采用喷沙去除钝化膜。在相同的氮化温度情况下,奥氏体不锈钢比珠光体或马氏体不锈钢的氮化速度要慢得多,钢中合金化程度越高氮化速度越慢。
高速钢的氮化一般高速钢的氮化不宜出现3相,否则将出使渗层变脆,根据以上规律,高速钢应进行低温短时渗氮。因为在较低的温度下渗层厚度的增厚比较慢,便于控制,且渗层表面氮浓度较低。短时低温氮化浓度较低,韧性较好。高速钢(w18cr4v)一般采用510—520摄氏度)直径《15mm的用15—20min,较大的采用25—32min,大型的采用60min。

3. 焊接卫生级不锈钢管怎样使用氮气

焊接卫生级不锈钢管使用氮气的方法是,
采用管道塞封闭两端,
充入密封氮气,
注意焊接环境的通风防窒息,
按照焊接工艺程序进行焊接。

4. 不锈钢怎么氮化处理啊

不锈钢的氮化方法关键在于去除其钝化膜,钝化膜是不锈钢防锈和不能氮化回的原因所在答,所以要使不锈钢氮化,关键是去除表面的钝化膜。不锈钢氮化的目的在于提高其硬度,提高其耐摩性和抗侵蚀能力。去除钝化膜的方法有化学法和机械法,化学法是把工件泡在50%(体积)盐酸(温度70度)中,然后用水清洗干净;机械法可以采用喷沙去除钝化膜。在相同的氮化温度情况下,奥氏体不锈钢比珠光体或马氏体不锈钢的氮化速度要慢得多,钢中合金化程度越高氮化速度越慢。
高速钢的氮化一般高速钢的氮化不宜出现3相,否则将出使渗层变脆,根据以上规律,高速钢应进行低温短时渗氮。因为在较低的温度下渗层厚度的增厚比较慢,便于控制,且渗层表面氮浓度较低。短时低温氮化浓度较低,韧性较好。高速钢(w18cr4v)一般采用510—520摄氏度)直径《15mm的用15—20min,较大的采用25—32min,大型的采用60min

5. 氮化不锈钢时需要加什么来进行催化,且与工件的比例

一般不锈钢材料氮化时需要用什么材料进行催化?不是催化而是进行去钝化膜处理。
由于不锈钢的铬含量较高,与空气作用会在表面形成一层致密的氧化物薄膜(钝化膜)。这种薄膜会阻碍氮原子的渗入。因此必须进行去钝化膜处理。
通用的方法有机械法和化学法两大类。
1喷沙。工件在渗氮前用细沙在0.15~0.25MPa的压力下进行喷砂处理,直至表面呈暗灰色,清除表面灰尘后立即入炉。
2磷化。渗氮前对工件进行磷化处理,可有效破坏金属表面的氧化膜,形成多孔疏松的磷化层,有利于氮原子的渗入。
3氯化物浸泡。将喷砂或精加工后的工件用氯化物浸泡或涂覆,能有效的去除氧化膜。常用的氯化物有TiCl2和TiCl3等。

6. 不锈钢铸造用什么添加增加含氮量

在密封状态下、直接将氮气充入钢包内、能保护高氮钢水、减少高氮钢水中氮析出的浇注高氮不锈钢用充氮钢包盖。

7. 如何增强不锈钢的渗氮效果

(Acta Materialia,
2006,54:5599-5605)刊出了由中国科学院兰州化学物理研究所薛群基院士领导的小组与法国Troyes技术大学吕坚教授(现在香港理工大学)合作研究的最新结果表面机械研磨纳米化对AISI 321不锈钢等离子渗氮结构与性能的影响。
该研究工作发现,用表面机械研磨(SMAT)纳米化处理具有广泛工程应用的合金材料奥氏体不锈钢,表面产生了纳米晶结构的改性层。研究结果表明,在较低的温度下用脉冲直流辉光等离子技术对不锈钢进行渗氮处理,与没有纳米化处理的试样相比,纳米化处理显著地增强了不锈钢的渗氮效果,有效地降低了渗氮温度,获得了厚的渗氮层和更高的表面硬度。
同时,表面纳米化预处理解决了不锈钢渗氮层浅、脆性大的问题。耐磨性能提高了3-10倍,负荷承载能力也有显著的提高。这归因于表面纳米化后低温等离子渗氮,
AISI 321不锈钢表面形成了更厚的S相和氮的扩散层,改善了表面的硬度分布梯度。
该研究将工程上常用的不锈钢作为研究对象,从材料的表面纳米化出发,优化了奥氏体不锈钢等离子渗氮层的结构和性能。所得出的结果,不但表明了纳米结构对低温等离子渗氮具有决定性的作用,同时也显示纳米化技术在工程领域的应用有重要价值。

8. 不锈钢热处理,怎么氮化

Hⅴ850~1200是什么意思,另外HV表示什么意思。

阅读全文

与精铸不锈钢如何加氮相关的资料

热点内容
钢铁雄心4校长怎么打日本 浏览:710
氯化氢用什么钢材 浏览:369
建彩钢房面积怎么算 浏览:448
电焊怎么焊接技术 浏览:78
排气管弯头下料怎么下 浏览:210
什么材质不锈钢板能耐4000度 浏览:872
钢管的维修费是什么科目 浏览:522
818是什么不锈钢好 浏览:571
钢铁收割怎么没上xbox 浏览:415
钢铁雄心4日本用什么学说 浏览:209
不锈钢宣传栏里贴什么材质的 浏览:496
锌合金的和铝合金哪个好 浏览:726
胳膊骨折拆钢板多久能上班 浏览:778
不锈钢用什么焊缝 浏览:37
济南到永联钢铁怎么去 浏览:7
防爆铝合金电磁阀怎么用 浏览:30
临朐家用铝合金花箱哪里有卖 浏览:105
钢管做什么玩意 浏览:944
大腿取钢板后多久可以锻炼 浏览:226
诸城铝合金厂有哪些 浏览:965