❶ 熔滴过渡的种类介绍
熔滴从焊丝端头脱落后,通过电弧空间自由运动一段距离后落入熔池的过渡形式称为自由过渡。因条件不同,熔滴的自由过渡又可分为滴状过渡和喷射过渡两种形式。
焊接电流较小时,熔滴的直径大于焊丝直径,当熔滴的尺寸足够大时,主要依靠重力将熔滴缩短拉断,熔滴落入熔池,熔滴的这种过渡形式称为滴状过渡。
(1)轴向滴状过渡:焊条电弧焊、富氩混合气体保护焊时,熔滴在脱离焊条(丝)前处于轴向(下垂)位置(平焊时),脱离焊条(丝)后也沿焊条(丝)轴向落入熔池,这种过渡形式称为滴状过渡。
(2)非轴向滴状过渡:多原子气氛(co2、n2、h2)中,阻碍熔滴过渡的力大于熔滴的重力,熔滴在脱离焊丝之前就偏离轴线,甚至上翘,在脱离焊丝之后,熔滴一般不能沿焊丝轴向过渡,形成飞溅,称为熔滴的非轴向滴状过滤。
熔滴呈细小颗粒并以喷射状态快速通过电弧空间向熔池过渡的形式,称为喷射过渡,喷射过渡可分为射滴过渡和射流过渡两种形式。
(1)射滴过渡:在某些条件下,形成的熔滴尺寸与焊丝直径相近,焊丝金属以较明显的分离熔滴形式和较高的速度沿焊丝轴向射向熔滴的过渡形式,称为射滴过渡。
(2)射流过渡:在某些条件下,因电弧热和电弧力的作用,焊丝端头熔化的金属压成铅笔尖状,以细小的熔滴从液柱尖端高速轴向射入熔池的过渡形式,称为射流过渡。这些直径远小于焊丝直径的熔滴过渡,频率很高,看上去好像是在焊丝端部存在一条流向熔池的金属液流。
❷ 请问如何分辩各种焊接方法的熔滴过渡形式啊请高手指教,谢谢~
去网络搜下"熔滴过度"上边说的很清楚.
❸ 熔化极氩弧焊的熔滴过渡形式有哪几种,并简述其应用范围
熔化极氩弧焊的熔滴过渡
熔滴过渡形态有粗滴过渡、射滴过渡、射流过渡、亚射流过渡、短路过渡等。
应用广泛的是射滴过渡、射流过渡和亚射流过渡。
射滴过渡
形成条件:一般是MIG焊铝时或钢焊丝脉冲焊时出现,电流必须达到射滴过渡临界电流
原理:阻碍熔滴过渡的力主要是焊丝与熔滴间的表面张力。斑点压力作用在熔滴表面各个部位,其阻碍熔滴过渡的作用降低。
过渡的推动力是作用在熔滴上的电磁收缩力。
熔滴的尺寸明显减小,接近于焊丝直径,熔滴沿焊丝轴向过渡。
射滴过渡的电弧形态及熔滴上的作用力
a) 射滴过渡的熔滴及电弧形态
b) 射滴过渡的熔滴上的作用力
射流过渡
当焊接电流进一步增大,并超过射流过渡的临界电流值时,产生射流过渡。熔滴过渡时电弧燃烧稳定,对保护气流扰动较小,金属飞溅也小,故容易获得良好的保护效果和焊接质量。 MIG和MAG焊主要采用这种过渡形式。
亚射流过渡
形成条件: 只在铝及铝合金MIG焊时才会出现的一种熔滴过渡形式
定义:其介于短路过渡和射滴过渡之间。由于弧长较短,尺寸细小的熔滴在即将以射滴形式过渡到熔池中时,发生短路,然后在电磁收缩力的作用下完成过渡。
特点
1)弧长比较短,电弧向四周扩展为碟形,
存在熔滴短路过程,电弧略微带有爆声。
2)熔深呈碗形,可避免指状熔深。
3)电弧呈蝴蝶形状,阴极雾化
作用强。
❹ 请问,焊接时。金属熔化过渡方式,有哪些各有什么特点
什么是熔滴的自由过渡?
熔滴从焊丝端头脱落后,通过电弧空间自由运动一段距离后落入熔池的过渡形式称为自由过渡。因条件不同,熔滴的自由过渡又可分为滴状过渡和喷射过渡两种形式。
(1)滴状过渡 焊接电流较小时,熔滴的直径大于焊丝直径,当熔滴的尺寸足够大时,主要依靠重力将熔滴缩颈拉断,熔滴落入熔池,熔滴的这种过渡形式称为滴状过渡。滴状过渡有两种形式:
1)轴向滴状过渡 手弧焊、富氩混合气体保护焊时,熔滴在脱离焊条(丝)前处于轴向(下垂)位置(平焊时),脱离焊条(丝)后也沿焊条(丝)轴向落入熔池的过渡形式称为滴状过渡,见图28a。
2)非轴向滴状过渡 在多原子气氛中(CO2、N2、H2),阻碍熔滴过渡的力大于熔滴的重力,熔滴在脱离焊丝之前就偏离焊丝轴线,甚至上翘,在脱离焊丝之后,熔滴一般不能沿焊丝轴向过渡,形成飞溅称为熔滴非轴向滴状过渡。
(2)喷射过渡 熔滴呈细小颗粒并以喷射状态快速通过电弧空间向熔池过渡的形式称为喷射过渡。喷射过渡还可分为射滴过渡和射流过渡两种形式:
1)射滴过渡 在某些条件下,形成的熔滴尺寸与焊丝直径相近,焊丝金属以较明显的分离熔滴形式和较高的加速度沿焊丝轴向射向熔池的过渡形式称为射滴过渡,见图29a。
2)射流过渡 在某些条件下,因电弧热和电弧力的作用,焊丝端头熔化的金属被压成铅笔尖状,以细小的熔滴从液柱尖端高速轴向射入熔池的过渡形式称为射流过渡。这些直径远小于焊丝直径的熔滴过渡频率很高,看上去好像在焊丝端部存在一条流向熔池的金属液流,见图29b。
什么是熔滴的短路过渡?
焊条(或焊丝)端部的熔滴与熔池短路接触,由于强烈过热和
磁收缩的作用使熔滴爆断,直接向熔池过渡的形式称为短路过渡,见图30。熔滴的短路过渡频率可达20~200次/s。
29、什么是熔滴的混合过渡?
在一定条件下,熔滴过渡不是单一形式,而是自由过渡与短路过渡的混合形式,这就称为熔滴的混合过渡。例如,管状焊丝气体保护电弧焊及大电流CO2气体保护电弧焊时,焊丝金属有时就是以混合过渡的形式向熔池过渡。
30、试述熔滴过渡时产生飞溅的原因。
熔焊时,在熔滴过渡过程中,一部分熔滴溅落到熔池以外的现象称为飞溅。
产生飞溅的原因有以下几个方面:
(1)气体爆炸引起的飞溅 用涂料焊条焊接及活性气体保护焊时,由于冶金反应在液体内部将产生大量CO气体,气体的析出十分猛烈,尤如爆炸,使液体金属发生粉碎形的熔滴,溅落在焊缝两侧的母材上,成为飞溅。
(2)斑点压力引起的飞溅 电弧中的带电质点——电子和阳离子,在电场的作用下向两极运动,撞击在两极的斑点上产生机械压力,称为斑点压力。斑点压力是阻碍熔滴过渡的力,焊条端部的熔滴在斑点压力的作用下,十分不稳定,不断地跳动,有时被顶到焊丝的侧面,甚至使熔滴上挠,最终在重力和斑点压力的共同作用下,脱离焊丝成为飞溅。手弧焊和CO2气体保
护焊采用直流正接时经常会发生这种类型的飞溅。
(3)短路过渡引起的飞溅 CO2气体保护焊采用短
路过渡时,在短路的最后阶段,如果还继续增大焊接电流,这时的电磁收缩力使熔滴往上飞起,引起强烈飞溅。
❺ 焊接时.金属熔化过渡方式,有哪些各有什么特点
什么是熔滴的自由过渡?熔滴从焊丝端头脱落后,通过电弧空间自由运动一段距离后落入熔池的过渡形式称为自由过渡。因条件不同,熔滴的自由过渡又可分为滴状过渡和喷射过渡两种形式。(1)滴状过渡 焊接电流较小时,熔滴的直径大于焊丝直径,当熔滴的尺寸足够大时,主要依靠重力将熔滴缩颈拉断,熔滴落入熔池,熔滴的这种过渡形式称为滴状过渡。滴状过渡有两种形式:1)轴向滴状过渡 手弧焊、富氩混合气体保护焊时,熔滴在脱离焊条(丝)前处于轴向(下垂)位置(平焊时),脱离焊条(丝)后也沿焊条(丝)轴向落入熔池的过渡形式称为滴状过渡,见图28a。2)非轴向滴状过渡 在多原子气氛中(CO2、N2、H2),阻碍熔滴过渡的力大于熔滴的重力,熔滴在脱离焊丝之前就偏离焊丝轴线,甚至上翘,在脱离焊丝之后,熔滴一般不能沿焊丝轴向过渡,形成飞溅称为熔滴非轴向滴状过渡。(2)喷射过渡 熔滴呈细小颗粒并以喷射状态快速通过电弧空间向熔池过渡的形式称为喷射过渡。喷射过渡还可分为射滴过渡和射流过渡两种形式:1)射滴过渡 在某些条件下,形成的熔滴尺寸与焊丝直径相近,焊丝金属以较明显的分离熔滴形式和较高的加速度沿焊丝轴向射向熔池的过渡形式称为射滴过渡,见图29a。2)射流过渡 在某些条件下,因电弧热和电弧力的作用,焊丝端头熔化的金属被压成铅笔尖状,以细小的熔滴从液柱尖端高速轴向射入熔池的过渡形式称为射流过渡。这些直径远小于焊丝直径的熔滴过渡频率很高,看上去好像在焊丝端部存在一条流向熔池的金属液流,见图29b。什么是熔滴的短路过渡?焊条(或焊丝)端部的熔滴与熔池短路接触,由于强烈过热和 磁收缩的作用使熔滴爆断,直接向熔池过渡的形式称为短路过渡,见图30。熔滴的短路过渡频率可达20~200次/s。29、什么是熔滴的混合过渡?在一定条件下,熔滴过渡不是单一形式,而是自由过渡与短路过渡的混合形式,这就称为熔滴的混合过渡。例如,管状焊丝气体保护电弧焊及大电流CO2气体保护电弧焊时,焊丝金属有时就是以混合过渡的形式向熔池过渡。30、试述熔滴过渡时产生飞溅的原因。熔焊时,在熔滴过渡过程中,一部分熔滴溅落到熔池以外的现象称为飞溅。产生飞溅的原因有以下几个方面:(1)气体爆炸引起的飞溅 用涂料焊条焊接及活性气体保护焊时,由于冶金反应在液体内部将产生大量CO气体,气体的析出十分猛烈,尤如爆炸,使液体金属发生粉碎形的熔滴,溅落在焊缝两侧的母材上,成为飞溅。(2)斑点压力引起的飞溅 电弧中的带电质点--电子和阳离子,在电场的作用下向两极运动,撞击在两极的斑点上产生机械压力,称为斑点压力。斑点压力是阻碍熔滴过渡的力,焊条端部的熔滴在斑点压力的作用下,十分不稳定,不断地跳动,有时被顶到焊丝的侧面,甚至使熔滴上挠,最终在重力和斑点压力的共同作用下,脱离焊丝成为飞溅。手弧焊和CO2气体保护焊采用直流正接时经常会发生这种类型的飞溅。(3)短路过渡引起的飞溅 CO2气体保护焊采用短 路过渡时,在短路的最后阶段,如果还继续增大焊接电流,这时的电磁收缩力使熔滴往上飞起,引起强烈飞溅。
❻ 二氧化碳保护焊实芯焊丝的熔滴过渡形态有几种,怎么来区分呢
MAG焊熔滴过渡形态可以分为短路过渡,喷射过渡,亚射流过渡,脉冲过渡等,
依据材质,焊件尺寸,焊接姿势而使用。
1.短路过渡
MIG焊熔滴短路过程与二氧化碳电弧焊熔滴短路过渡是相同的,也是使用较细的焊丝在低电压,小电流下产生的一种可得用的熔滴过渡方式,区别在于MIG焊熔滴短路过渡是在更低的电压下进行并且过渡过程稳定,飞溅少,适合进行薄板高速焊接或窨位置焊缝的焊接。其特点是采用小电流和低电压焊接时,熔滴在未脱离焊丝端头前就与熔池直接接触,电弧瞬时熄灭短路,熔滴在短路电流产生的电磁收缩力用液体金属的表面张力作用下过渡到熔池中。短路过渡形式的电弧稳定,飞溅较小,成形良好,不过熔深较浅。
2.喷射过渡
MIG焊接熔滴喷射过渡主要用于中等厚度和大厚度板水平对接和水平角接。MIG电弧能够产生熔滴喷射过渡的原因是电弧形态比较扩展。
MIG焊一般采用焊丝为阳极,而把焊丝接负或采用交流的较少。其原因有两项,一是要充分利用电弧对母材的清理作用,另一原因是为了使熔滴细化,并且能形成平稳过渡。
在小电流时,由于电磁拘束力小,熔滴主要受重力的作用而产生过渡,其颗粒较焊丝直径更大。这种焊接过渡工艺形成的焊缝易出现熔合不良,未焊透,余高过大等缺陷,因此在实际焊接中一般不用。当增大电流后,电极前端被削成尖状,熔滴得以细颗粒化,这时的熔滴过渡形态称作“喷射过渡”。
1) 射滴过渡
射滴过渡时的电弧是钟罩形。铝及合金熔化极氩弧焊及钢焊丝的脉冲焊经常是射滴过渡形式。易形成未熔透等缺陷。
2) 射流过渡
焊丝前端在电弧中被削成铅笔状,熔滴从前端流出,以很细小的颗粒进行过渡。其过渡频度最大可以达到每秒500次。此时强大的等离子流力和高速熔滴的冲击力在熔池中部产生很大的挖掘作用,将熔池中部的液体金属排向两边和后侧,使得电弧直接加热熔池底部的金属。于是在熔池中部形成了犹如指状的熔池凹陷,通常称为指状熔深。这种焊缝在其根部易于形成气孔,未熔通等缺陷,当面氩中加入少量二氧化碳,氧气,氦气时,可使这种指状熔深得到改善。另外,在焊接铝及铝合金时,易出现焊缝起皱现象,这需要控制好保护气体和焊接电流来避免。
3,亚射流过渡
这是介于短路过渡与射滴过渡之间的一种过渡形式。电弧特征是弧长较短。这种过渡形式主要用于平焊及横焊位置的铝及铝合金焊接。其优点是焊缝外形用熔深非常的均匀一致,可避免指状熔深。
4,脉冲过渡
在平焊位置通过脉冲参数的调整,使熔滴过渡按照所希望的方式进行。进行空间位置焊缝焊接时,由于脉冲电流大,使熔滴过渡具有更强的方向性,有利于熔滴沿电弧轴线顺利过渡到熔池中。由于脉冲平均电流小,所形成的熔池体积也会小一些,再加上脉冲加热和熔滴过渡是间断性发生的,所以熔池金属即使处于立焊位置也不至于流淌,保持了熔池状态的稳定性。对于热敏感性较大的材料,通过平均电流调节对母材的热输入或焊接线能量使焊缝金属和热影响区的过热现象降低,从而使接头具有良好的品质。裂纹倾向性降低。此外,脉冲作用方式可以防止熔池出现单向性结晶,也能够提高焊缝性能。
❼ 焊接熔滴过渡与电流的关系是什么
焊接熔滴过渡与电流的关系以CO2气体保护焊为例。
一、 短路过渡焊接
CO2电弧焊中短路过渡应用最广泛,主要用于薄板及全位置焊接,规范参数为电弧电压焊接电流、焊接速度、焊接回路电感、气体流量及焊丝伸出长度等。
1、电弧电压和焊接电流:
对于一定的焊丝直径及焊接电流(即送丝速度),必须匹配合适的电弧电压,才能获得稳定的短路过渡过程,此时的飞溅最少。
不同直径焊丝的短路过渡时参数如表:
焊丝直径(㎜) 电弧电压(V) 焊接电流(A)
Φ0.8 18 100-110
Φ1.2 19 120-135
Φ1.6 20 140-180
2、 焊接回路电感,电感主要作用:
(1)、调节短路电流增长速度电流/电压 过小发生大颗粒飞溅至焊丝大段爆断而使电弧熄灭,电流/电压 过大则产生大量小颗粒金属飞溅。
(2)、调节电弧燃烧时间控制母材熔深。
(3)、焊接速度。焊接速度过快会引起焊缝两侧吹边,焊接速度过慢容易发生烧穿和焊缝组织粗大等缺陷。
(4)、气体流量大小取决于接头型式板厚、焊接规范及作业条件等因素。通常细丝焊接时气流量为5-15 L/min,粗丝焊接时为20-25 L/min。
(5)、焊丝伸长度。合适的焊丝伸出长度应为焊丝直径的10-20倍。焊接过程中,尽量保持在10-20㎜范围内,伸出长度增加则焊接电流下降,母材熔深减小,反之则电流增大熔深增加。电阻率越大的焊丝这种影响越明显。
(6)、电源极性。CO2电弧焊一般采用直流反极性时飞溅小,电弧稳定母材熔深大、成型好,而且焊缝金属含氢量低。
二、 细颗粒过渡
1、在CO2气体中:
对于一定的直径焊丝,当电流增大到一定数值后同时配以较高的电弧压,焊丝的熔化金属即以小颗粒自由飞落进入熔池,这种过渡形式为细颗粒过渡。
细颗粒过渡时电弧穿透力强母材熔深大,适用于中厚板焊接结构。细颗粒过渡焊接时也采用直流反接法。
2、 达到细颗粒过渡的电流和电压范围:
焊丝直径 电流下限值(A) 电弧电压(V)
Φ1.2 300 32-34
Φ1.6 400 34-36
Φ2.0 500 36-38
随着电流增大电弧电压必须提高,否则电弧对熔池金属有冲刷作用,焊缝成形恶化,适当提高电弧电压能避免这种现象。然而电弧电压太高飞溅会显著增大,在同样电流下,随焊丝直径增大电弧电压降低。CO2细颗粒过渡和在氩弧焊中的喷射过渡有着实质性差别。氩弧焊中的喷射过渡是轴向的,而CO2中的细颗粒过渡是非轴向的,仍有一定金属飞溅。另外氩弧焊中的喷射过渡界电流有明显较变特征。(尤其是焊接不锈钢及黑色金属)而细颗粒过渡则没有。
❽ 焊条金属的熔滴过渡形式主要有哪三种
大滴过渡 喷射过渡 细颗粒过渡
❾ 焊条金属的熔滴过渡形式主要有哪三种
那怎么会呢
这两个就是好同样的东西,干过电焊的人都知道,
我在大学学的就是电焊版j422是普通的一种叫法,也可权以说是中文名字。e4303是国际标准名称。
j表示结构钢焊条,42是42kg/mm2焊缝金属的抗拉强度,执行标准
gb/t5117-1995
碳钢焊条。
❿ 二氧化碳气体保护焊的过渡形式有几种谢谢了
对于CO2气体保护焊而言,主要存在三种熔滴过渡形式,即短路过渡、滴状过渡、射滴过渡。以下简过这三种过渡形式的特点、与工艺参数(主要是电流、电压)的关系以及其应用范围。
短路过渡。短路过度是在细焊丝、低电压和小电流情况下发生的。焊丝熔化后由于斑点压力对熔滴有排斥作用,使熔滴悬挂于焊丝端头并积聚长大,甚至与母材的深池相连并过渡到熔池中,这就是短路过渡形式,见下图:
1)过渡主要特征是短路时间和短路频率。影响短路过渡稳定性的因素主要是电压,电压约为18~21V时,短路时间较长,过程较稳定。
焊接电流和焊丝直径也即焊丝的电流密度对短路过渡过程的影响也很大。在表(1)中列出了不同焊丝直径时的允许电流范围和最佳电流范围。在最佳电流范围内短路频率较高,短路过渡过程稳定,飞溅大,必须采取增加电路电感的方法以降低短路电流的增长速度,避免产生熔滴的瞬时爆炸和飞溅。另外一个措施是采用Ar-CO2混合气体(各约50%),因富Ar气体下斑点压力较小,电弧对熔滴的排斥力较小,过程比较稳定和平静。细焊丝工作范围较宽,焊接过程易于控制,粗焊丝则工作范围很窄,过程难以控制。因此只有焊丝直径在ф1.2mm以下时,才可能采用短路过渡形式。短路过渡形式一般适用于薄钢板的焊接。
CO2气体保护焊稳定短路过渡时不同焊丝直径的电流范围
焊丝直径(mm)
允许电流(A)
最佳电流(A)
0.8
60~160
60~100
1.0
70~240
70~120
1.2
90~260
90~175
1.6
110~290
110~200
2.0
120~350
120~250
2)滴状过渡。滴状过渡是在电弧稍长,电压较高时产生的,此时熔滴受到较大的斑点压力、熔滴在CO2气氛中一般不能沿焊丝轴向过渡到熔池中,而是偏离焊丝轴向,甚至于上翘,如下图所示。由于产生较大的飞溅,因此滴状过渡形式在生产中很难采用。只有在富氩混合气焊接时,熔滴才能形成向过渡和得到稳定的电弧过程。但因富氩气体的成本是纯CO2气体的几倍,在建筑钢结构的生产和施工安装中应用较少。
3)射滴过渡。CO2气体保护焊的射滴过渡是一种自由过渡的形式,但其中也伴有瞬时短路。它是在φ1.6~3.0的焊丝,大电流条件下产生的,是一种稳定的电弧过程。
焊丝直径φ1.2~3.0时,如电流较大,电弧电压较高,能产生如前所述的滴状过渡,但如电弧电压降低,电弧的强烈吹力将会排除部分熔池金属,而使电弧部分潜入熔池的凹坑中,随着电流增在则焊丝端头几乎全部潜入熔池,同时熔滴尺寸减小,过渡频率增加,飞溅明显降低,形成典型的射滴过渡,如下所示。但电流增大有一定限度,电流过大时,电弧力过大,会强烈扰动熔池,破坏焊接过程。
由于射滴过渡对电源动特性要求不高,而且电流大,熔敷速度高,适合于中厚板的焊接,不易出现未熔合缺陷,但由于熔深大,熔宽也大,射滴过渡用于空间位置焊接时,焊缝成形不易控制。