1. 焊接成型特点
1.能以小拼大,化大为小,简化了复杂的机器零部件,可获得最佳技术经济效内果;
2.能制造多容金属结构,充分利用了材料性能;
3.焊接接头的密封性好;
4.节省金属,材料利用率高;
5.不可拆卸,维修不方便;焊接应力和变形较大,且接头的组织性能不均匀。
2. 如何描述焊缝成形
焊缝成形主要包括:焊缝外观尺寸,如焊缝高度、宽度、焊脚高版等;焊波(纹)粗细权,是否均匀;外观缺陷情况,如内凹、咬边、焊瘤、未融合、未焊透、夹渣等;以及飞溅大小等情况。
焊接术语——焊缝成形系数 [form factor (of the weld)],GB/T3375-1994中定义为:
熔焊时,在单道焊缝横截面上焊缝宽度(B)与焊缝计算厚度(H)的比值(φ=B/H)。
焊缝成形系数小时形成窄而深的焊缝,在焊缝中心由于区域偏析会聚集较多的杂质,抗热裂纹性能差,所以形成系数值不能太小,如自动埋弧焊时焊缝的成形系数要大于 1.3,即焊缝的宽度至少为焊缝计算厚度的1.3倍。
3. 焊缝成形缺陷有哪些说明焊缝成形缺陷的防止措施
夹渣、气孔来,裂纹,咬边源,弧坑,焊瘤等。
夹渣和气孔的成因主要是熔池冷却太快,熔渣和气体来不及浮上熔池的液态金属表面而形成,尽量形成宽而浅的焊缝,而不要窄而深的,焊缝接头处注意充分预热等。
裂纹要分冷裂纹和热裂纹,要注意的主要是焊材的选择以及焊接前和焊接后的热处理。
弧坑的成因主要是焊工操作,注意弧坑补起就可以了。
咬边的原因一般是电流过大过电压过高,注意焊接工艺调整就可以了。
焊瘤有打底焊道的背面焊瘤和立焊横焊的焊瘤,成因都是因为焊缝液态金属体积过大而重力下淌,主要还是焊工操作注意即可。
4. 焊缝成形系数的意义是什么
熔焊时,在单道焊缝横截面上焊缝宽度(B)与焊缝计算厚度(H)的比值(φ=B/H),嘿嘿,我也不会,帮你在网上搜的==
5. 如何描述焊缝成形
焊缝成形主要包括:焊缝外观尺寸,如焊缝高度、宽度、焊脚高等;焊波(纹)内粗细,是否均匀容;外观缺陷情况,如内凹、咬边、焊瘤、未融合、未焊透、夹渣等;以及飞溅大小等情况。
焊接术语——焊缝成形系数
[form
factor
(of
the
weld)],GB/T3375-1994中定义为:
熔焊时,在单道焊缝横截面上焊缝宽度(B)与焊缝计算厚度(H)的比值(φ=B/H)。
焊缝成形系数小时形成窄而深的焊缝,在焊缝中心由于区域偏析会聚集较多的杂质,抗热裂纹性能差,所以形成系数值不能太小,如自动埋弧焊时焊缝的成形系数要大于
1.3,即焊缝的宽度至少为焊缝计算厚度的1.3倍。
6. 简述焊接电流对焊缝成形影响的原因
焊接电流,是指焊接时流经焊条、焊丝的回路电流。它是焊接的重要参数内,对焊接质量和速度容有极大影响。
1。焊接电流过小,则不易起弧、易息弧、电弧不稳定、熔深不足,焊道窄余高大,容易造成未焊透、夹渣、焊瘤和冷裂纹等问题。
2。焊接电流过大,则焊缝熔深大,焊道宽余高大,容易造成烧穿、咬边、夹钨、气孔、热裂纹等缺陷,且增加了金属飞溅导致浪费,还会导致焊缝及热影响区金属晶粒粗大(热脆化),影响物理性能。
焊接电流的确定,应结合焊接的类型、母材性质、焊条焊丝牌号、电压、焊速等因素综合确定,最好经过工艺试验。
7. 什么叫焊缝成形系数
焊缝成形系数
焊接术语
——焊缝成形系数
[form
factor
(of
the
weld)],GB/T3375-1994中定义为:
熔专焊时,在单道焊属缝横截面上焊缝宽度(B)与焊缝计算厚度(H)的比值(φ=B/H),见图13。
焊缝成形系数小时形成窄而深的焊缝,在焊缝中心由于区域偏析会聚集较多的杂质,抗热裂纹性能差,所以形成系数值不能太小,如自动埋弧焊时焊缝的成形系数要大于
1.3,即焊缝的宽度至少为焊缝计算厚度的1.3倍。
8. 容易获得良好焊缝成形的焊接位置是
坡口形式及组装
CO2 气体保护焊对坡口形式和组装的要求较为严格。对接焊缝的坡口形式以及尺寸包括角度、钝边和装配间隙。坡口角度主要影响电弧是否能深入到焊缝的根部,使根部焊透,进而获得较好的焊缝成形和焊接质量。保证电弧能够深入到焊缝根部的前提下,应尽量减小坡口角度。钝边的大小可以直接影响根部的熔透深度,钝边越大,越不容易焊透。钝边小或无钝边时容易焊透,但装配间隙大时,容易烧穿。 装配间隙是背面焊缝成形的关键参数,间隙过大,容易烧穿;间隙过小,很难焊透。采用直径为1. 2 mm的H08Mn2 Si焊丝。单面焊双面成形封底焊缝的熔滴过渡形式为短路过渡,通常可以选用较小的钝边,甚至可以不留钝边,装配间隙为2~4 mm,坡口形式要求采用V形坡口,坡口角度在60°±5°,对提高坡口精度以及焊接质量,起到了很好的作用。焊接中注意天气的影响,特别是防风措施一定要做到位。
2. 2焊接电流的选择
焊接电流是确定熔深的主要因素,当焊接电流太大时,则焊缝背面容易烧穿、出现咬边、焊瘤,甚至产生严重的飞溅和气孔等缺陷;电流过小时,容易出现未熔合、未焊透、夹渣和成形不好等缺陷。试验表明:当选用直径为1. 2 mm焊丝时,单面焊双面成形的封底焊接电流为85~100 A较为合适。因此,焊接电流的大小直接影响焊缝的成形以及焊接缺陷的产生。
2. 3焊接电压的选择:
在短路过渡的情况下,电弧电压增加则弧长增加。电弧电压过低时,焊丝将插入熔池,电弧变得不稳定。所以电弧电压一定要选择合适,通常焊接电流小,则电弧电压低;电流大,则电弧电压高。
2. 4焊接速度的选择
当焊丝直径、焊接电流和电压为定值时,熔深、熔宽及余高随着焊接速度的增大而减小。如果焊接速度过快,容易使气体的保护作用受到破坏,焊缝冷却的速度太快,焊缝成形不好;焊接速度太慢,焊缝的宽度显著增大,熔池的热量过分集中,容易烧穿或产生焊瘤。
3操作方法:
焊管CO2 气体保护焊是明弧操作,熔池的可见度好,容易掌握熔池的变化,可以直接观察到电弧击穿的熔孔,能够控制熔孔的大小并且保持一致,在这方面要比手工电弧焊优越的多。另外,焊接时接头少,不易产生缺陷,但操作不当也容易产生缺陷。所以,操作时应特别引起注意。
3. 1干伸长度的控制
干伸长度对焊接过程的稳定性影响比较大,当干伸长度越长时,焊丝的电阻值增大,焊丝过热而成段熔化,结果使焊接过程不稳定,金属飞溅严重,焊缝成形不好以及气体对熔池的保护也不好;如果干伸长度过短,则焊接电流增大,喷嘴与工件的距离缩短,焊接的视线不清楚,易造成焊道成形不良,并使得喷嘴过热,造成飞溅物粘住或堵塞喷嘴,从而影响气体流通。因此,干伸长度一般选择焊丝直径的十倍为最佳干伸长度。
3. 2焊丝与焊管角度的选择
焊丝与焊管纵向以及横向的角度是保证单面焊双面成形封底焊焊接质量的关键,应特别注意,各种焊接位置封底焊时焊丝与焊管的角度。焊管对接横焊时,焊丝与焊管的轴线成下倾斜10°~20°与圆周切线成70°~80°;焊管对接全位置焊时,焊丝与焊管的轴线成90°与圆周切线成60°~80°。
3. 3打底焊焊缝接头
打底焊时,应尽量减少接头,若需要接头时,用砂轮把弧坑部位打磨成缓坡形。打磨时要注意不要破坏坡口的边缘,造成焊管的间隙局部变宽,给打底焊带来困难。接头时,干伸长的顶端对准缓缓焊接,当电弧燃烧到缓坡的最薄的位置时,正常摆动。CO2 气体保护焊的焊接接头方式与手工电弧焊的接头完全不一样。手工焊焊接接头时,当电弧烧到熔孔处时,压低电弧,稍作停顿才能接上;而CO2 气体保护焊只需正常的焊接,用它的熔深就可以把接头接上。
3. 4打底焊
打底焊是焊管焊接接头质量的关键,注意熔接时接头的方法,才能避免焊接缺陷的产生。焊接电流应依据坡口角度的大小作适当的调整,坡口角度大时散热面积小,电流应调小一些,否则容易造成塌陷和反面咬边等缺陷。打底焊时选用短齿形摆动,由于短齿形的间距没有掌握好,焊丝在装配间隙中间穿出,如果在整条焊缝中有少量的焊丝穿出,是允许的;如果穿出的焊丝很多,则是不允许的。为了防止焊丝向外穿出,打底焊时,焊枪要握平稳,可以用两手同时把握焊枪,右手握住焊枪后部,食指按住启动开关,左手握住焊把鹅颈部分就可以了。这样就能减少穿丝或不穿丝,保证打底焊的顺利进行和打底焊的内部质量。
要注意的是,在打底焊前应对焊接规范进行检查,避免在施焊的过程中出现问题,检查导电阻的内径是否合适,注意喷嘴内部的飞溅物是否堵塞喷嘴。停弧或打底焊结束时,焊枪不要马上离开弧坑,以防止产生缩孔及气孔。
打完底的填充盖面就不用再说了吧!呵呵!
9. 焊缝成型系数是啥意思吗
焊缝成形系数是Ψ=C/H;式中C表示焊缝宽度,H 表示板厚。对于手工焊Ψ>1--1.3;对于自动焊,Ψ=1.3-1.8。这样已经间接的确定了不同板厚的焊缝宽度。
10. 焊接焊缝成型形式
(1)按两焊件的相对位置分: 对接、搭接、角接、T型等。
(2)对接焊缝按受版力与焊缝方向分:权
a)直缝:作用力方向与焊缝方向正交
b)斜缝:作用力方向与焊缝方向斜交
(3)角焊缝按受力与焊缝方向分:
a)端缝:作用力方向与焊缝长度方向垂直
b)侧缝:作用力方向与焊缝长度方向平行
(4)按焊缝连续性:
a)连续焊缝:受力较好
b)断续焊缝:易发生应力集中
(5)按施工位置:
俯焊、立焊、横焊、仰焊,其中以俯焊施工位置最好,所以焊缝质量也最好,仰焊最差。