Ⅰ 对于低碳钢材料的拉伸试验,当其断口不在标距长度中部三分之一区段内 为什么要采用断口移中法测量断
这是因为考虑到低碳钢拉断时实际上并不是均匀伸长的.越靠近端部伸长得越少.如果断在标距点附近,直接测量的伸长量可能会偏小.所以采取位移法.注意到位移法实际在做的事情是所谓的“断口移中”,右边多量一次移到左边去.这样量出来的比直接测量地大一些,也接近断在中间情况下的数值.
Ⅱ 低碳钢和铸铁拉伸试验为什么要采用标准式样
因为拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关,试回件局部变形较大的断口部分,答在不同长度的标距中所占比例也不同,因此在拉伸实验中必须采用标准试件或比例试件。
拉伸夹具根据不同的试样及试验力大小,在结构上差别很大。大试验力的试样一般采用斜面夹紧结构,随试验力的增加,夹紧力随之增加,台肩试样采用悬挂结构等。
(2)拉伸实验低碳钢为什么材料扩展阅读:
金属材料的高温拉伸试验所规定的性能指标与常温拉伸试验时基本相同,但一般是测定抗拉强度、屈服强度、断后伸长率和断面收缩率四大性能指标。由于做高温短时拉伸试验时,负荷持续时间的长短,对拉伸性能有显著影响。快速拉断短时高温拉伸试样时,抗拉强度值明显提高。
屈服点或规定非比例伸长应力的情况也类似。因此国家标准中对高温短时拉伸试验时的拉伸速度作了严格限制。试样的最大允许应变速度只及常温拉伸试验时的1/20。通常估计,做一次拉伸试验,其负荷持续的时间不应小于15~20min。
Ⅲ 低碳钢拉伸实验应力-应变曲线,分几个阶段
分4个阶段:
(1)弹性阶段ob:这一阶段试样的变形完全是弹性的,全部卸除荷载后,试样将恢复其原长。此阶段内可以测定材料的弹性模量E。
(2)屈服阶段bc:试样的伸长量急剧地增加,而万能试验机上的荷载读数却在很小范围内波动。如果略去这种荷载读数的微小波动不计,这一阶段在拉伸图上可用水平线段来表示。若试样经过抛光,则在试样表面将看到大约与轴线成45°方向的条纹,称为滑移线。
(3)强化阶段ce试样经过屈服阶段后,若要使其继续伸长,由于材料在塑性变形过程中不断强化,故试样中抗力不断增长。
(4)颈缩阶段和断裂Bef试样伸长到一定程度后,荷载读数反而逐渐降低。此时可以看到试样某一段内横截面面积显著地收缩,出现“颈缩”的现象,一直到试样被拉断。
(3)拉伸实验低碳钢为什么材料扩展阅读:
低碳钢的变形过程有如下特点:
1、当应力低于σe时,应力与试样的应变成正比,应力去除,变形消失,即试样处于弹性变形阶段,σe为材料的弹性极限,它表示材料保持完全弹性变形的最大应力。
2、当应力超过σe后,应力与应变之间的直线关系被破坏,并出现屈服平台或屈服齿。如果卸载,试样的变形只能部分恢复,而保留一部分残余变形,即塑性变形,这说明钢的变形进入弹塑性变形阶段。σs称为材料的屈服强度或屈服点,对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限。
3、当应力超过σs后,试样发生明显而均匀的塑性变形,若使试样的应变增大,则必须增加应力值,这种随着塑性变形的增大,塑性变形抗力不断增加的现象称为加工硬化或形变强化。当应力达到σb时试样的均匀变形阶段即告终止,此最大应力σb称为材料的强度极限或抗拉强度,它表示材料对最大均匀塑性变形的抗力。
在σb值之后,试样开始发生不均匀塑性变形并形成缩颈,应力下降,最后应力达到σk时试样断裂。σk为材料的条件断裂强度,它表示材料对塑性的极限抗力。
Ⅳ 材料力学低碳钢铸铁拉伸实验为什么要用标准试件
力学性能与试件的形状和尺寸有关,因此必须在规定的条件下进行比较才有意义
Ⅳ 在拉伸试验中低碳钢和铸铁在拉断时是什么断口形状有什么不同为什么
1.低碳钢常温拉伸断口一般呈典型的杯椎状断口。
2.铸铁试样常温拉伸断口基专本没有变属化(或者说稍微缩小的圆截面),破坏断口与横截面重合,断口粗糙,呈凹凸颗粒状。
原因当然是因为前者是塑性材料后者是脆性材料咯,塑性材料受拉要经过弹性阶段,屈服阶段,以及强化和颈缩阶段(简单的说就是破坏前形状变化比较明显);而脆性材料受拉时则没有上述过程,破坏前没有明显的塑性变形,突然断裂。我回答得比较笼统,实际情况跟材料的质量,试件的形状,拉伸的速度,外界的温度等等都有关系,但我的回答足够你写作业了。
最后,建议学弟(或学妹)好好看看教材,不知道你们学校情况是怎么样的,这种问题应该很基础,我们学校反正是材料(材料力学,土木工程材料等等各种只要是含材料的)课上讲得很详细,而且你做试验的那本教材上实验原理部分也写得非常非常详细,稍微用心学学的想不知道都难。
祝你成功!
Ⅵ 低碳钢和铸铁的拉伸实验的思考题
从实验现象和实验结果对比低碳钢和铸铁的力学性能
测定E时为何要选取初荷载?版为什么使用增量权法计算弹性模量
实验时如何确定低碳钢的屈服强度
材料相同而标距不同的两种材料,其弹性模量,上屈服强度,下屈服强度,抗拉强度,伸长率,收缩率是否相同?为什么
试验速率的控制对试验结果是否有影响?如何影响?
Ⅶ 拉伸破坏实验所确定的材料力学性能数据有何实用价值(低碳钢、铸铁的拉伸实验)
拉伸抄破坏就是测定材料的强度极限与屈服极限,做拉伸实验的目的是考察材料静力学范畴,比如说设计方要求螺栓的热处理抗拉强度为1200MPa,承受载荷为50KN,这就需要用拉伸试验机测定真实数据来证明加工出来的产品符合设计要求,另外就是开发新领域材料时拉伸试验是最基本的试验也是用于设计的基本数据;还有就是产品失效后的检测项目,通过拉伸间接反映材料的脆性等。
……拉伸试验只是力学性能中的一种,其他的比如剪切、疲劳、冲击、扭拉、顶锻等等。
Ⅷ 金属材料的拉伸实验中如何观察低碳钢的屈服点
若用老式的万能材料试验机,实验时超出弹性变形范围后,力盘指针会有一个回复过程 即来回摆动 而屈服点一般采取 下屈服点来纪录,所以只要记录下,指针的最大摆动回复位置的刻度指数就可以确定屈服点。
若采用新式机器,计算机会自动在实验结束后显示,屈服极限,和强度极限。
钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。
屈服点(yield point)
设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=10^6(10的6次方)Pa,Pa:帕斯卡=N/m2)。
2.屈服强度(σ0.2)有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。
屈服点
(σs)
具有屈服现象的金属材料,试样在拉伸过程中力不增加(保持恒定)仍能继续伸长时的应力,称屈服点。若力发生下降时,则应区分上、下屈服点。屈服点的单位为N/mm2(MPa)。
上屈服点
(σsu)
----试样发生屈服而力首次下降前的最大应力;产生原因为开始塑性变形时,位错密度较低,位错运动需要在较大应力下发生;
下屈服点
(σsl)
----当不计初始瞬时效应时,屈服阶段中的最小应力。
Fs--试样拉伸过程中屈服力(恒定),N(牛顿);
So--试样原始横截面积,mm2。
Ⅸ 材料力学拉伸试验中低碳钢与铸铁的断口特征
在拉伸与压缩实验中,低碳刚及铸铁的断口特征:
低碳钢断口有内明显的塑性破坏产生的光亮容倾斜面,倾斜面倾角与试样轴线近似成(称杯状断口),这部分材料的断裂是由于切应力造成的,中心部分为粗糙平面,塑性越大对应杯状断口越大,中心粗糙平面的面积越小。而铸铁没有任何的倾斜侧面,断口平齐,并垂直于拉应力,属典型的脆性断口。
根据材料力学知识:铸铁属典型的脆性材料,其抗拉性能较差,破坏符合最大拉应力理论。铸铁受扭时横截面边缘处剪应力最大,取单元体进行应力分析可得到主应力方向与断裂面方向垂直且与圆轴表面相切,由于圆轴表面是曲面,各点主应力的主平面沿方向连起来就形成一个螺旋线,从外向内应力状态相似,故形成螺旋面而不是平面。
Ⅹ 为什么低碳钢拉伸试验是材料典型的静拉伸试验
从这种材料的拉伸试验过程中,可清楚看到其线性变形阶段,非线性变形阶段,屈服阶段,强化阶段。所以比较典型。