1. 低碳钢的冷作硬化名词解释
钢材在常温或再结晶温度以下的加工产生强烈的塑性变形,使晶格扭曲、畸变,晶粒产生剪切、滑移,晶粒被拉长,这些都会使表面层金属的硬度增加,减少表面层金属变形的塑性,称为冷作硬化。金属在冷态塑性变形中,使金属的强化指标,如屈服点、硬度等提高,塑形指标如伸长率降低的现象称为冷作硬化。
2. 钢材的冷作硬化时效
冷作硬化就是通过冷加工而使零件表面产生的表面应力,使零件的表面内比加工前的表面硬度耐磨性等容有所提高。
冷拉时效一般指普通的钢材在常温下施加机械拉应力,这样零件内部会产生轴向的内应力,对于零件在使用过程中轴向的强度大大加强,但是在冷拉的时候不要超过材料本身的屈服强度,超过了等于就是把它拉坏了,把零件冷拉之后理论上讲它会有慢慢恢复到它原来形状的内应力,在恢复到原状之前它 的强度大于冷拉之前,所以叫冷拉时效。
3. 冷作硬化的冷作硬化的力学现象
普通弹性材料(例如低碳钢)在拉伸实验中会经历4个阶段:弹性形变、屈服阶段、强化阶段、破坏直至断裂
弹性形变:即材料所受拉力在弹性极限之内,拉力与材料伸长成正比(胡克定律)。当外力撤去之后,材料会恢复原来的长度。
屈服阶段:在外部拉力超过弹性极限之后,材料失去抵抗外力的能力而“屈服”,即在此情况下外力无显著变化材料依然会伸长。当外力撤去后,材料无法回到原来的长度。
强化阶段:材料在内部晶体重新排列后重新获得抵抗拉伸的能力,但此时的形变为塑性形变,外力撤去后无法回到原来的长度。
破坏阶段:材料在过度受力后开始在薄弱部位出现颈缩现象,抵抗拉伸能力急剧下降,直至断裂。
由于钢材在从红热状态冷却后,内部热应力及晶体排列的缘故,无法使其发挥出最大的抵抗拉伸能力,因此在常温下,将钢材拉伸至强化阶段后撤去外力。钢材经过这种加工后,长度增加,直径缩小,弹性极限上升至相当于原材料强化阶段,大大提升了材料的弹性极限。并且使应变率降低,提高了材料的刚度。
4. 工程力学问题 当施加载荷使低碳钢试件超过屈服阶段后卸载,第二次再加载,则材料的比例极限将会提高。这
用手机没法上传图片,如果能找到一张低碳钢的应力应变曲线会更好理解。
我们知道低碳钢版的应力应权变曲线图依次分为弹性阶段,屈服阶段,强化阶段,颈缩阶段,当受到轴向拉压力使材料到达屈服极限与强度极限中间时,卸去外力,此时弹性形变恢复,因此可做一条平行于弹性阶段的线段,使应力到达零。因为材料的弹性模量没有改变,因此当受力时,材料也会沿着刚才的直线进行弹性变形,由此可以看出,材料的比例极限变大,材料的强度变高了。
5. 低碳钢拉伸试验时,断裂时的载荷比最大载荷小,相应的应力也不是最大,为什么反而此时断裂
断裂时的应力实际是最大的。你计算时用的公式里边的面积是原始横截面积,不是断裂部位断裂时的横截面积。也就是说你计算出来的应力是表象应力,不是真实应力。
6. 钢材性能的劣化形式有哪些工程上可采用哪些措施来预防
钢材性能劣化的因素:
1、化学成分
钢是由多种化学成分组成的,铁(Fe)是钢材的基本元素。
低碳钢:(Q235)Fe(99%),C、Mn、Si、O、S、N、P(1%);
低合金钢:(16Mn)Fe(95%),合金元素(低于5%)。
(1)含C越多,钢材的强度越高,塑性、韧性越差,脆性提高,可焊性变差;故一般碳含量≤0.22%,对焊接结构≤0.20%;
(2)Mn为弱脱氧剂,是有益元素;
(3)Si为强脱氧剂,是有益元素;
(4)O、S是有害元素,含量过高会导致“热脆”(在热加工过程中,使钢材变脆,而出现裂缝或断裂),因此限制含量≤0.045%;
(5)N、P有害元素,带来冷脆性(在冷加工过程中或低温下工作时,使钢结构韧性降低,并容易产生脆性破坏),控制含量≤0.045%。
2、冶金缺陷
(1) 偏析:钢中化学成分(有害成分)分布不均匀;
(2) 非金属夹杂:钢中混有硫化物、氧化物等杂质;
(3) 分层:钢板(t>40mm)沿厚度出现薄弱层,将导致层状撕裂;
(4) 气泡:指浇注时气体不能充分逸出而留在钢锭中形成的缺陷;
(5) 裂纹:危害最严重。
3、钢材的硬化
(1) 时效硬化(老化):随时间的推移,钢材的屈服强度和抗拉强度提高,而塑性、冲击韧性降低的过程;
(2) 冷作硬化:(在弹塑性阶段)通过重复加载、卸载,可以提高钢材的屈服点,而塑性和韧性降低的过程;常用冷拉冷拔等冷加工方法;
(3) 应变时效硬化:是冷作硬化后又加时效硬化。
4、温度的影响
温度升高,钢材强度降低,应变增大;反之,温度降低,钢材强度会略有增加,塑性和韧性却会降低而变脆。
5、应力集中
由于钢结构存在着孔洞、刻槽、凹角、裂纹以及厚度的突然改变,此时,构件中的应力不再保持均匀分布,而是某些区域产生局部高峰应力,而另外一些区域则应力降低,即应力集中现象。
应力集中往往引起脆性破坏,故在设计中应采取措施避免或减小应力集中,并选用质量优良的钢材。
6、反复荷载作用
钢材在反复荷载作用下,结构的抗力及性能都会发生重要变化,甚至发生疲劳破坏。“强度退化,刚度劣化”