『壹』 冷作硬化的冷作硬化的力学现象
普通弹性材料(例如低碳钢)在拉伸实验中会经历4个阶段:弹性形变、屈服阶段、强化阶段、破坏直至断裂
弹性形变:即材料所受拉力在弹性极限之内,拉力与材料伸长成正比(胡克定律)。当外力撤去之后,材料会恢复原来的长度。
屈服阶段:在外部拉力超过弹性极限之后,材料失去抵抗外力的能力而“屈服”,即在此情况下外力无显著变化材料依然会伸长。当外力撤去后,材料无法回到原来的长度。
强化阶段:材料在内部晶体重新排列后重新获得抵抗拉伸的能力,但此时的形变为塑性形变,外力撤去后无法回到原来的长度。
破坏阶段:材料在过度受力后开始在薄弱部位出现颈缩现象,抵抗拉伸能力急剧下降,直至断裂。
由于钢材在从红热状态冷却后,内部热应力及晶体排列的缘故,无法使其发挥出最大的抵抗拉伸能力,因此在常温下,将钢材拉伸至强化阶段后撤去外力。钢材经过这种加工后,长度增加,直径缩小,弹性极限上升至相当于原材料强化阶段,大大提升了材料的弹性极限。并且使应变率降低,提高了材料的刚度。
『贰』 钢材的冷加工硬化对钢材的性能有何影响
钢材在冷拉、冷拔、冷弯、冲切、剪切等冷加工时都会产生很大的塑性变形,由此产生冷作硬化。①冷作硬化可提高钢材的屈服强度,②但同时降低塑性和增加脆性,③对钢结构特别是承受动力荷载的钢结构是不利的。
『叁』 为什么低碳刚材料经过冷作硬化后,比例极限提高而塑性降低
延伸率会下降。因为冷作硬化后,材料强硬度提高,变形度下降了。比例极限提高。。。
『肆』 低碳钢冷变形前后硬度值变化的原因是什么
产生加工硬化的原因与位错密度增大有关。随着低碳钢冷塑变形的进行,亚机构细化,位错密度大大增加,位错间距越来越小,晶格畸变程度也急剧增大;加之位错间距的交互作用加剧,从而使位错运动的阻力增大,引起变形阻力增加。这样使金属的塑性变形就变得困难,要继续变形就必须增大外力,因此就提高了金属的强度。
『伍』 工程力学问题 当施加载荷使低碳钢试件超过屈服阶段后卸载,第二次再加载,则材料的比例极限将会提高。这
用手机没法上传图片,如果能找到一张低碳钢的应力应变曲线会更好理解。
我们知道低碳钢版的应力应权变曲线图依次分为弹性阶段,屈服阶段,强化阶段,颈缩阶段,当受到轴向拉压力使材料到达屈服极限与强度极限中间时,卸去外力,此时弹性形变恢复,因此可做一条平行于弹性阶段的线段,使应力到达零。因为材料的弹性模量没有改变,因此当受力时,材料也会沿着刚才的直线进行弹性变形,由此可以看出,材料的比例极限变大,材料的强度变高了。
『陆』 冷作硬化会改变钢材的性能将使钢材的什么提高什么降低
硬度,塑性指标。金属在冷态塑性变形中,使金属的指标强化,如屈服点、硬度等提高,塑性指标如伸长率降低的现象称为冷作硬化。“冷作硬化,材料科学术语,金属材料在常温或在结晶温度以下的加工产生强烈的塑性变形。
『柒』 工程上常利用冷作硬化来提高钢筋的屈服强度,达到节约钢材的目的
硬化来提高钢筋的屈服强度,达到节约钢材的目的 [理工学科] 是提高钢筋的屈服极限还是屈服强度? 它们有区别吗
『捌』 钢材的冷作硬化时效
冷作硬化就是通过冷加工而使零件表面产生的表面应力,使零件的表面内比加工前的表面硬度耐磨性等容有所提高。
冷拉时效一般指普通的钢材在常温下施加机械拉应力,这样零件内部会产生轴向的内应力,对于零件在使用过程中轴向的强度大大加强,但是在冷拉的时候不要超过材料本身的屈服强度,超过了等于就是把它拉坏了,把零件冷拉之后理论上讲它会有慢慢恢复到它原来形状的内应力,在恢复到原状之前它 的强度大于冷拉之前,所以叫冷拉时效。