① 热轧管 直缝管 无缝管的区别
直缝钢管与无缝钢管的主要区别介绍,直缝钢管和无缝管的主要区别有生产技术,还有应用两个部分。直缝管是铁板,经过压弯,合口,焊接等工序生产出来的,允许有一条焊缝。而无缝管是圆钢通过轧管机热轧出来的,是没有焊缝的。
直缝钢管是用带钢卷曲通过焊接完成的,无缝管是没有焊接的缝隙的,无缝管是用圆钢直接制作而成的一个整体的圆形钢管,用钢胚直接拉出来的。
直缝焊管是用钢板或是刚带经过卷曲成型后焊接制成的钢管,焊接钢管生产工艺简单,生产效率高,品种规格多,单一般强度低于无缝管。
直缝钢管和无缝管的主要区别有生产技术,还有应用两个部分。直缝管是铁板,经过压弯,合口,焊接等工序生产出来的,允许有一条焊缝。而无缝管是圆钢通过轧管机热轧出来的,是没有焊缝的。无缝管和直缝管在直径壁厚相等的情况下,无缝管所承受的压力和坚固程度,是远远大于直缝管的。一般压力比较高的工程用管就选择无缝管,没有压力或压力比较低的工程在允许的情况下就选择成本比较低的直缝管。
热轧管是相对于冷轧而言的,冷轧是在再结晶温度以下进行的轧制,而热轧就是在再结晶温度以上进行的轧制.
优点
可以破坏钢锭的铸造组织,细化钢材的晶粒,并消除显微组织的缺陷,从而使钢材组织密实,力学性能得到改善。这种改善主要体现在沿轧制方向上,从而使钢材在一定程度上不再是各向同性体;浇注时形成的气泡、裂纹和疏松,也可在高温和压力作用下被焊合。
缺点
经过热轧之后,钢材内部的非金属夹杂物(主要是硫化物和氧化物,还有硅酸盐)被压成薄片,出现分层(夹层)现象。分层使钢材沿厚度方向受拉的性能大大恶化,并且有可能在焊缝收缩时出现层间撕裂。焊缝收缩诱发的局部应变时常达到屈服点应变的数倍,比荷载引起的应变大得多;
不均匀冷却造成的残余应力。残余应力是在没有外力作用下内部自相平衡的应力,各种截面的热轧型钢都有这类残余应力,一般型钢截面尺寸越大,残余应力也越大。残余应力虽然是自相平衡的,但对钢构件在外力作用下的性能还是有一定影响。如对变形、稳定性、抗疲劳等方面都可能产生不利的作用。
热轧的钢材产品,对于厚度和边宽这方面不好控制。因为热胀冷缩,热轧出来即使是长度、厚度都达标,冷却后还是会出现一定的负差,这种负差边宽越宽,厚度越厚表现的越明显。所以对于大号的钢材,对于钢材的边宽、厚度、长度,角度,以及边线都没法要求太精确
② 直逢焊钢管与螺旋焊钢管有什么不同各优缺点
优点:
直缝焊管优点:
1、母材的100%超声检测,保证了管体的内在质量。
2、没有拆卷——圆盘剪的工序,材压坑、划伤少。
3、焊接是在成型完成后,在水平位置沿直线进行的,因此,错边、开缝、管径周长控制较好,焊接质量优良。
4、消除应力后的成品管基本上不存在残余应力。
5、焊缝短,产生缺陷的概率小。
6、可以有条件的输送潮湿的酸性天然气。
7、扩径后,钢管的几何尺寸精度高,大大方便了管道现场对接施焊,可提高整条管线的质量。
螺旋焊钢管优点:
1、使用同一宽度的带钢能够生产出不同直径的钢管,尤其是可用窄带钢生产大直径的钢管。
2、同等压力条件下,螺旋形焊缝所承受的应力比直缝小,为直缝焊管的75%~90%,因而能够承受较大的压力。与相同外径的直缝焊管相比较,在承受同等压力的情况下,壁厚可减小10%~25%。
3、尺寸精确,一般直径公差不超过0.12%,挠度小于1/2000,椭圆度小于1%,一般可以省去定径和矫直工序。
4、可连续生产,理论上可以生产无限长钢管,切头、切尾损失小,可提高金属利用率6%~8%。
5、和直缝焊管相比其操作灵活、更换品种调整方便。
6、设备重量轻、初投资少。可做成拖车式流动机组,直接在敷设管道的施工工地生产焊管。
7、易于实现机械化、自动化。
缺点:
直缝焊管缺点:
1、不均匀冷却造成的残余应力。残余应力是在没有外力作用下内部自相平衡的应力,各种截面的热轧型钢都有这类残余应力,一般型钢截面尺寸越大,残余应力也越大。残余应力虽然是自相平衡的,但对钢构件在外力作用下的性能还是有一定影响。如对变形、稳定性、抗疲劳等方面都可能产生不利的作用。
2、经过焊接之后,钢管内部的非金属夹杂物被压成薄片,出现分层现象。分层使钢管沿厚度方向受拉的性能大大恶化,并且有可能在焊缝收缩时出现层间撕裂。焊缝收缩诱发的局部应变时常达到屈服点应变的数倍,比荷载引起的应变大得多。
螺旋焊钢管缺点:
1、没有母材的100%无损检测,管体的内在质量难保证。
2、丁字焊缝存在缺陷的概率较高。
3、焊管生产线较长,产生母材压坑,划伤等缺陷较多。
4、边成型边焊接的动态生产工况易产生错边、开缝、管径变化以及动态工况加上在空间曲面上的焊点位置的影响,易产生各种焊接缺陷。
5、存在较复杂的残余应力,如成型卷曲过程中产生的弯曲应力、扭曲应力以及自由边变形较充分,递送边被迫变形产生的应力,内、外焊接产生的残余应力等,其残余应力的分布、量值大小变化较大,螺旋缝焊管又不易消除残余应力,因此影响管线的寿命。
6、焊缝长,为管长的1.3~2.3倍,增加产生缺陷的概率。
7、焊速较高,产生焊接缺陷的概率高。
8、输送酸性天然气时会损坏埋弧焊缝。
③ 钢材中常见的缺陷有哪些
钢材常见缺陷有三种:
一、表面质量缺陷
1、表面裂纹:指钢材表面呈直线形的裂纹现象,一般应与锻造或轧制方向一致。
形成原因:主要是因为在加工(锻造、轧制、热处理调质)过程中因表面过烧、脱碳、疏松、变形和内应力过大以及表面硫、磷杂质含量较多而产生的发纹、热裂纹和冷裂纹。
表面裂纹可以通过肉眼观察、酸洗、磁粉探伤、着色检验和金相等方法检验出来。在确认裂纹时,必须注意区分钢材表面的氧化皮本身质脆疏松经过轻微弯曲而呈现的裂纹,而钢材本身并没有裂纹。
2、重皮与折叠:钢材表面黏结的呈舌状或鳞状的金属薄片,在局部表面形成重叠,有明显的折叠纹。形成原因:在热加工过程中由于钢坯上的飞边、毛刺、凹陷、夹杂物、皮下气孔和表面疏松等,在热变形时金属流变,开口于表面形成重皮与折叠。
3、耳子:指钢材表面沿轧制方向延伸的凹起。形成原因:轧机孔型间隙过大,使钢材表面沿孔隙形成凸起。
4、刮伤:也叫划伤,指钢材表面在外力作用下呈直线或弧形的沟痕(可见到沟底)。
二、内部缺陷
1、偏析:实际上是钢中化学成分不均分现象的总称。在酸浸试样上,当偏析是易蚀物质或气体夹杂聚集是呈颜色深暗、形状不规则、略显凹陷、底部平坦,并有很多密集微孔的斑点,若为抗蚀元素聚集,则呈颜色浅淡,形状不规则,比较光滑的微凹斑点。根据偏析出现的位置和形状,通常把它们归纳为以下几类:①中心偏析:出现在中心部分,呈形状不规则的深暗斑点。②锭型偏析:集中在一条宽窄不同、具有原钢锭横截面形状(一般为方形)的闭合带上的深暗色斑点,所以锭型偏析也叫方框偏析。③点状偏析:斑点一般较大,呈颜色较深、略显凹陷的图形,椭圆形或瓜子形。一般分布的,称为一般点状偏析:分布在钢材边缘部分的,叫做边缘点状偏析。
形成原因:偏析是在钢锭浇注凝固过程中,由于选择结晶和扩散作用引起某些元素的聚集。偏析是一般生产情况下无法避免的。
2、疏松:钢材内部的孔隙,这种孔隙在低倍样上一般呈现不规则多边形,底部尖狭的凹坑,通常多出现在偏析斑点之内。严重时,有连成海绵状的趋势。根据疏松分布的情况把它们分为中心疏松和一般疏松两大类:①中心疏松:在低倍试样中心部位呈集中的空隙和暗黑小点。纵向断口上呈轻微夹层,在显微镜下可以看到中心疏松处珠光体增多,说明中心疏松处含碳量增多。②一般疏松:在低倍试样上组织致密,呈分散的小孔隙和小黑点。孔隙多呈不规则的多边形或图形,分布在除了边沿部分以外的整个断面上。
中心疏松一般出现在钢锭头部和中部,和一般疏松的区别在于分布在钢材断面和中心部位而不是整个截面。通常含碳量越高的钢中,中心疏松越严重。
形成原因:钢锭在凝固过程中,由于晶间部分低熔点物质最后凝固收缩和放出气体产生空隙,而在热加工过程中未配焊管。
在钢中,轻微的偏析,较高的疏松级别是可以允许存在的。
3、夹杂:夹杂分金属夹杂和非金属夹杂。①金属夹杂:主要是浇铸过程中,金属条、片、块误落入钢锭模内或在冶炼末期加入的铁合金块等未及熔化所形成的缺陷,在低倍样上,多呈现边缘清晰,颜色与周围显著不同的几何形状。②非金属夹杂:在浇注过程中,没有来得及浮出的熔渣或剥落到钢水中的炉衬和浇注系统内壁的耐火材料等,较大的非金属夹杂物很好辨认,而较小的夹杂腐蚀后剥落,留下细小的圆形小孔。
4、缩孔:在低倍样上,缩孔位于中心部位,其周围常是偏析、夹杂或疏松密集的地方,有时在腐蚀前就可以看到洞穴或缝隙。腐蚀后孔穴部分变暗,呈不规则褶皱的孔洞。
形成原因:钢锭浇注时,最后凝固的部分(心部)钢液凝固收缩后得不到填充而遗留的宏观孔穴,缩孔主要形成在钢锭头部(帽口端)。
5、气泡:在低倍样上,是与表面大致垂直的裂缝,附近略有氧化和脱碳现象,在表面以下的位置存在称为皮下气泡,较深的皮下气泡称为针孔。
形成原因:钢锭浇注过程中所产生的气体和放出的气体造成的缺陷。
6、裂纹:在低倍样上,轴心位置沿晶间开裂,成蛛网状,严重时呈放射状开裂。
形成原因:主要是两种,一种是钢锭在凝固冷却时,由于某种原因而产生的内部撕裂,在锻轧过程中未能焊合;另一种则由于锻造不当而产生的内部开裂。
7、白点:在低倍样上呈细短的裂缝,一般集中在钢材的内部,在厚度20-30mm表面层内几乎没有,因为裂纹不易区分,应补作断口试验予以验证。白点在断口上显示为粗晶粒状的银亮白点。形成原因:一般认为是氢和组织应力的作用,就是氢气脱析集到疏松微孔中产生巨大压力和钢相变时所产生的局部内应力联合造成的细小裂缝。
三、外形尺寸缺陷
1、尺寸起差:包括钢材的长度、直径、厚度、正负公差、修磨深度、宽度等尺寸不符合订货标准的要求。
2、椭圆度:指圆形截面的钢材截面上最大最小直径之差。
3、弯曲度:钢材在长度和宽度方向不平直,不同材料的弯曲度有不同的名称,型材以弯曲度表示;板、带则以镰刀弯、波浪弯、飘曲度表示。
4、扭转:条形钢材沿轴向扭成螺旋状。
④ 焊接钢管和无缝钢管的区别是什么,各在什么
一、材料不同
1、焊接钢管:焊接钢管是指用钢带或钢板弯曲变形为圆形、方形等形状后再焊接成的、表面有接缝的钢管,焊接钢管采用的坯料是钢板或带钢。
2、无缝钢管:由整块金属制成的,表面上没有接缝的钢管,称为无缝钢管。
二、用途不同
1、焊接钢管:可用作水煤气管等,大口径直缝焊管用于高压油气输送等;螺旋焊管用于油气输送、管桩、桥墩等。
2、无缝钢管:用做石油地质钻探管、石油化工用的裂化管、锅 炉管、轴承管以及汽车、拖拉机、航空用高精度结构钢管。
三、分类不同
1、焊接钢管:按焊接方法不同可分为电弧焊管、高频或低频电阻焊管、气焊管、炉焊管、邦迪管等。按用途又分为一般焊管、镀锌焊管、吹氧焊管、电线套管、公制焊管、托辊管、深井泵管、汽车用管、变压器管、电焊薄壁管、电焊异型管和螺旋焊管。
2、无缝钢管:无缝管分热轧管、冷轧管、冷拔管、挤压管、顶管等。按照断面形状,无缝钢管分圆形和异形两种,异形管有方形、椭圆形、三角形、六角形、瓜子形、星形、 带翅管多种复杂形状。最大直径达650mm,最小直径为 0.3mm。根据用途不同, 有厚壁管和薄壁管。
(4)焊管的非金属夹杂物扩展阅读:
无缝钢管质量要求
1、钢的化学成分:钢的化学成分是影响无缝钢管性能最主要的因素之一,也是制定轧管工艺参数和钢管热处理工艺参数的主要依据。
(1)合金元素:有意加入,根据用途;
(2)残余元素:炼钢带入,适当控制;
(3)有害元素:严格控制(As、Sn、Sb、Bi、Pb),气体(N、H、O);
炉外精炼或电渣重熔:提高钢中化学成分的均匀性和钢的纯净度,减少管坯中的非金属夹杂物并改善其分布形态。
2、钢管几何尺寸精度和外形
(1)钢管外径精度:取决于定(减)径方法、设备运转情况、工艺制度等。
外径允许偏差 δ=(D-Di)/Di ×100% D: 最大或最小外径mm;
(2)名义外径mm;
(3)钢管壁厚精度:与管坯的加热质量,各变形工序的工艺设计参数和调整参数,工具质量及其润滑质量等有关;
壁厚允许偏差: ρ=(S-Si)/Si×100% S:横截面上最大或最小壁厚;
Si:名义壁厚mm;
(4)钢管椭圆度:表示钢管的不圆程度;
(5) 钢管长度:正常长度、定(倍)尺长度、长度允许偏差;
(6)钢管弯曲度:表示钢管的弯度:每米钢管长度的弯曲度、钢管全长的弯曲度;
(7)钢管端面切斜度:表示钢管端面与钢管横截面的倾斜程度;
(8)钢管端面坡口角度和钝边。
⑤ 怎样分辨不锈钢焊管的优劣
奥氏体不锈钢具有良好的可焊性,但焊接材料或焊接工艺不正确时会出现晶间腐蚀,晶间腐蚀发生于晶粒边界,所以叫晶问腐蚀。它是奥氏体不锈钢最危险的一种破坏形式,它的特点是腐蚀沿晶界深人金属内部,并引起金属机械性能和耐腐蚀性能的下降。奥氏体不锈钢在450~850%温度区间范围内停留一定时问后,则晶界处会析出C ,其中的铬主要来自晶粒表层,内部的铬如来不及补充,会使晶界晶粒表层的含铬量下降而形成贫铬区,在强腐蚀介质的作用下,晶界贫铬区受到腐蚀就会形成晶间腐蚀。
受到晶间腐蚀的不锈钢在表面上没有明显的变化,但在受力时会沿晶界断裂,几乎完全丧失强度。奥氏体不锈钢焊接时,由于焊缝中合金元素含量高,熔池流动性差,易造成焊缝表面成形不良。主要表现在根部焊道背面成形恶化及盖面焊道表面粗糙。焊缝表面成形不良对焊缝性能的影响在常温或高温工况下表现不明显,但在低温工况下,其成形不良所造成的应力集中,对焊缝低温性能的影响不亚于焊缝内部质量的影响。防止措施对于焊缝成形不良以及焊接热影响区的晶问腐蚀问题,可以通过焊接工艺来加以解决。采用钨极氩弧焊打底、较小的焊接线能量,来控制热影响区处于敏化温度区间的范围。翘皮特征:钢管内表面呈现直线或断续指甲状翘起的小皮。多出现在毛管头部,且易于剥落。产生原因:穿孔机调整参数不当。顶头粘钢。荒管内氧化铁皮堆积等。检判:钢管内表面允许存在无根易剥落(或在热处理时可烧掉)的翘皮。对有根的翘皮应修磨或切除。