❶ 在拉伸与压缩实验中,低碳刚及铸铁的断口特征
拉伸:低碳刚断口呈杯状,平面断口;灰铸铁断口垂直与式样轴线,呈平口状。
压缩:低碳刚压成鼓形,灰铸铁沿45度方向断裂。
低碳钢退火组织为铁素体和少量珠光体,其强度和硬度较低,塑性和韧性较好。因此,其冷成形性良好,可采用卷边、折弯、冲压等方法进行冷成形。这种钢还具有良好的焊接性。含碳量从0.10%至0.30%低碳钢易于接受各种加工如锻造,焊接和切削, 常用于制造链条, 铆钉, 螺栓, 轴等。
(1)低碳钢在做压缩会有什么现象扩展阅读:
将灰口铸铁铁水经球化处理后获得,析出的石墨呈球状,简称球铁。碳全部或大部分以自由状态的球状石墨存在,断口成银灰色。比普通灰口铸铁有较高强度、较好韧性和塑性。
其牌号以“QT”后面附两组数字表示,例如:QT45-5(第一组数字表示最低抗拉强度,第二组数字表示最低延伸率)。用于制造内燃机、汽车零部件及农机具等。
低碳钢有较大的时效倾向,既有淬火时效倾向,还有形变时效倾向。当钢从高温较快冷却时,铁素体中碳、氮处于过饱和状态,它在常温也能缓慢地形成铁的碳氮物,因而钢的强度和硬度提高,而塑性和韧性降低。
低碳钢即使不淬火而空冷也会产生时效。低碳钢经形变产生大量位错,铁素体中的碳、氮原子与位错发生弹性交互作用,碳、氮原子聚集在位错线周围。
❷ 分析低碳钢经压缩实验后 破坏的原因
低碳钢是塑性材料,压缩时的弹性模量,比例极限,屈服极限和拉伸时大致相同,屈服极限后试件越压越扁,抗压能力不断提高,直至被压成饼状。
低碳钢压缩曲线也有明显的屈服点,但由于试样很短屈服阶段与拉伸相比短的多,进入强化阶段后塑性变形越来越大,因三向应力状态限制了端面附近的变形,因此试样的变形呈鼓形。
铸铁是脆性材料,被压缩时,试样受压时将沿与轴线成50度~55度倾角的斜截面发生错动而破坏。这个破坏是由剪力引起的。
铸铁受压时不存在拉应力的影响,随着载荷的增长,45°截面的最大剪应力能够不断增长,因而产生明显的塑性变形,使压缩曲线与拉伸曲线相比明显变弯。
(2)低碳钢在做压缩会有什么现象扩展阅读:
低碳钢退火组织为铁素体和少量珠光体,其强度和硬度较低,塑性和韧性较好。因此,其冷成形性良好,可采用卷边、折弯、冲压等方法进行冷成形。这种钢还具有良好的焊接性。
低碳钢有较大的时效倾向,既有淬火时效倾向,还有形变时效倾向。当钢从高温较快冷却时,铁素体中碳、氮处于过饱和状态,它在常温也能缓慢地形成铁的碳氮物,因而钢的强度和硬度提高,而塑性和韧性降低。
低碳钢由于强度较低,使用受到限制。适当增加碳钢中锰含量,并加入微量钒、钛、铌等合金元素,可大大提高钢的强度。若降低钢中碳含量并加入少量铝、少量硼和碳化物形成元素,则可得到超低碳贝氏体组够其强度很高,并保持较好的塑性和韧性。
❸ 低碳钢试件压缩后为什么成鼓形
低碳钢为塑形材料,硬度小,塑形高,富有延展性,在压缩后,中间受到挤压,试样两端面收到摩擦力的影响,因此变形后成鼓状。
❹ 试比较低碳钢在拉伸及压缩时的力学性能,试比较铸铁在拉伸及压缩时的力学性能
拉伸开始时,低碳钢试棒受力大,先发生变形,随着变形的增大,受力逐渐减小,当试棒断开的瞬间,受力为“0”,其受力曲线是呈正弦波>0的形状。低碳钢由于含碳量低,它的延展性、韧性和可塑性都是高于铸铁的。
压缩开始时,低碳钢受力逐渐加大,试块随外力变形,当试块变形达到极限时,其受力也达到最大值,其受力曲线是一条向斜上方的直线。
拉伸开始时,铸铁由于轫性差,受力是逐步加大的,当达到并超过它的拉伸极限时,试棒断开,受力瞬间为“0”,其受力曲线是随受力时间延长,一条直线向斜上方发展,试棒断开,直线垂直向下归“0”。
压缩开始时,铸铁与低碳钢受力情况基本相同,只是当铸铁试块受力达到本身的破坏极限时,受力逐渐减小,直到试块在外力下被破坏(裂开),受力为“0”其受力曲线与低碳钢拉伸时的受力曲线相同。
(4)低碳钢在做压缩会有什么现象扩展阅读
在拉伸与压缩实验中,低碳刚及铸铁的断口特征有很大不同:
低碳钢断口有明显的光亮倾斜面,为塑性破坏所致。倾斜面倾角与试样轴线近似成杯状断口,断裂是由于切应力造成的,中心部分为粗糙平面,塑性越大杯状断口越大,中心粗糙平面的面积越小。
铸铁没有倾斜侧面,断口平齐,并垂直于拉应力,属脆性断口,比较典型。铸铁属典型的脆性材料,其抗拉性能较差,破坏符合最大拉应力理论。
铸铁受扭时剪应力最大处为横截面边缘处,取单元体进行应力分析可得到主应力方向与断裂面方向垂直且与圆轴表面相切,因为圆轴表面为曲面,各点主应力的主平面沿方向连起来会形成一个螺旋线,从外向内应力状态相似,因此形成螺旋面。
参考资料来源:网络-拉伸和压缩