A. 金属淬火后为什么会变硬
金属淬火后变硬是因为其组织在淬火后由奥氏体变为马氏体,马氏体的硬度要大一些,所以金属会变硬!
B. 钢板越烧越硬
呵呵,金属热处理后硬度的确会提高,但是热处理分类复杂,不同的处理方式会使金属具版备不同的特性或改善权其固有的特性,一般常见的是淬火,主要作用是提高金属的抗拉强度和屈服极限,辅以人工时效处理更可提高金属表面硬度。
C. 金属淬火后为什么会变硬
金属淬火后变硬是因为其组织在淬火后由奥氏体变为马氏体,马氏体的硬度要大一些,所以金属会变硬!
D. 淬火后 钢 为什么会变硬
-- 钢材的热处理方法和特性
※均质退火处理
简称均质化处理(on),系利用在高温进行长时间加热,使内部的化学成分充分扩散,因此又称为『扩散退火』。加热温度会因钢材种类有所差异,大钢锭通常在1200℃至1300℃之间进行均质化处理,高碳钢在1100℃至1200℃之间,而一般锻造或轧延之钢材则在1000℃至1200℃间进行此项热处理。
※完全退火处理
完全退火处理系将亚共析钢加热至Ac3温度以上30~50℃、过共析钢加热至Ac1温度以上50℃左右的温度范围,在该温度保持足够时间,使成为沃斯田体单相组织(亚共析钢)或沃斯田体加上雪明碳体混合组织后,在进行炉冷使钢材软化,以得到钢材最佳之延展性及微细晶粒组织。
※球化退火处理
球化退火主要的目的,是希望藉由热处理使钢铁材料内部的层状或网状碳化物凝聚成为球状,使改善钢材之切削性能及加工塑性,特别是高碳的工具钢更是需要此种退火处理。常见的球化退火处理包括:(1)在钢材A1温度的上方、下方反复加热、冷却数次,使A1变态所析出的雪明碳铁,继续附着成长在上述球化的碳化物上;(2)加热至钢材A3或Acm温度上方,始碳化物完全固溶于沃斯田体后急冷,再依上述方法进行球化处理。使碳化物球化,尚可增加钢材的淬火后韧性、防止淬裂,亦可改善钢材的淬火回火后机械性质、提高钢材的使用寿命。
※软化退火处理
软化退火热处理的热处理程序是将工件加热到600℃至650℃范围内(A1温度下方),维持一段时间之后空冷,其主要目的在于使以加工硬化的工件再度软化、回复原先之韧性,以便能再进一步加工。此种热处理方法常在冷加工过程反复实施,故又称之为制程退火。大部分金属在冷加工后,材料强度、硬度会随着加工量渐增而变大,也因此导致材料延性降低、材质变脆,若需要再进一步加工时,须先经软化退火热处理才能继续加工。
※弛力退火处理
弛力退火热处理主要的目的,在于清除因锻造、铸造、机械加工或焊接所产生的残留应力,这种残存应力常导致工件强度降低、经久变形,并对材料韧性、延展性有不良影响,因此弛力退火热处理对于尺寸经度要求严格的工件、有安全顾虑的机械构件事非常重要的。弛力退火的热处理程序系将工件加热到A1点以下的适当温度,保持一段时间(不需像软化退火热处理那么久)后,徐缓冷却至室温。特别需要注意的是,加热时的速度要缓慢,尤其是大型对象或形状复杂的工件更要特别注意,否则弛力退火的成效会大打折扣。
※正常化处理
正常化热处理有两个重要的功用,一是使工件结晶粒微细化而改善材料机械性质;另一个目的是调节轧延或铸造组织中碳化物的大小或分布状态,以利后续热处理时碳化物容易固溶于材质,以便提升材料切削性,并使材质均匀化。正常化热处理的热处理程序,系将工件加热至A3(亚共析钢)或Acm(过共析钢)点温度以上30℃至60℃的高温(此即为正常化温度)保持一段时间,材质成为均匀沃斯田体后,静置于空气中使之冷却。正常化时间的估算,可以每25mm厚度持温30分钟来估算需持温时间。正常化热处理又可分为二段正常化、恒温正常化及二次正常化等多种改良式正常化热处理。
※淬火处理
淬火处理的主要目的是将钢材急速冷却以便获得硬度极大的麻田散体组织。钢的淬火处理有三个要件,缺一不可,分别是:(1)在沃斯田体区域内加热一段时间(即沃斯田体化);(2)冷却时要能避开Ar’(波来体)变态;及(3)使钢材产生麻田散体或变韧体而硬化。
淬火处理可分为两个程序来实施,一是加热;一是冷却。通常加热温度又称为淬火温度或沃斯田体化温度,依热处理钢材的不同而有所差异。亚共析钢的淬火温度在Ac3温度以上30℃至60℃范围内,共析钢及过共析钢的淬火温度则是加热至Ac1温度以上30℃至60℃温度范围内。冷却时要分两个阶段来冷却,钢从加热炉取出的钢件,一直冷却到Ar’’变态前的临界区域,要尽量迅速冷却;在Ar’’以下的温度区域则需采缓慢冷却的方式,否则易造成钢材的淬裂或淬火变形,此温度区域又称为危险区域。
※回火处理
一般回火处理常继在淬火处理之后实施,以便消除淬火处理之不良影响而保留并发挥淬火之功效,其主要目的是使淬火生成的组织变态或析出更加安定(使形成回火麻田散体),减少残留应力并改善相关机械性质(提升材料延展性)。回火温度不同,会产生不同的机械强度与延展性组合,一般回火温度大多在600℃以下,因为更高的回火温度,任何钢材都会呈现急速软化的趋势,此时碳化物逐渐凝聚而球化、肥粒体会再结晶而成长为连续基地,是软化的主要原因。
※回火脆性
回火处理要避开几个会产生回火脆性的温度范围,这些脆化温度范围视钢材种类而有所不同,包括:(1)270℃至350℃脆化(又称低温回火脆性或A脆性),大多数的碳钢及低合金钢,都在此温度范围内发生脆化现象;(2)400℃至550℃脆化,通常构造用合金钢在此温度范围内会产生脆化现象;(3)475℃脆化(特别指Cr含量超过13%的肥粒体系不锈钢);(4)500℃至570℃脆化,针对工具钢或高速钢在此温度范围加热,会析出分布均匀的碳化物,产生二次硬化效果,但也易导致脆性。
※麻淬火处理
麻淬火处理的主要目的,在降低淬火时工件内外温度的巨大差异,并使于较低温度时工件内外一起产生麻田散体变态,可避免淬火破裂,并使淬火变形量降至最低而无损任何淬火硬度。其主要操作程序系将钢材淬入至温度在Ms点微上之热浴中,短暂持温使工件内外温度相同后,再提出空冷,使工件形成麻田散体变态的热处理方法。
※麻回火处理
麻回火处理是将钢材淬入Ms与Mf温度范围之间的热浴,经过长时间持温后,使过冷合金沃斯田体一部分变态成麻田散体,一部分变态成下变韧体。此种热处理后,可不必再行回火处理,且可降低一般淬火回火之急剧程度;其最终组织为回火麻田散体及变韧体之混合,因此拥有高硬度和高韧性的组合。主要的缺点是需要保持恒温的时间甚久,在工业应用上较不经济。
※沃斯回火处理
沃斯回火处理是一种较为特殊的热处理方法,主要程序是将钢材淬入温度介于S曲线鼻部与Ar’’(Ms点)温度之间的热浴,直到过冷沃斯田体完全变态成变韧体才取出空冷的一种热处理方法,亦称为变韧淬火,它不需要再行回火处理。沃斯回火的最大特色是可得高硬度、高韧性兼具的材质,一般而言,变态温度愈高,强硬度愈低,但可增进低温韧性;变态温度愈接近Ms温度,所得之强度、硬度皆大增,且伸长率及断面收缩率亦大增,颇适合小型工件之大量生产。
E. 淬火后钢为什么会变硬
淬火后的钢是马氏体组织,马氏体是碳原子在铁素体中的过饱和溶解,大量的版碳原子权固溶在铁晶格的间隙位置,有很强的固溶强化强化效果。
但是马氏体是不稳定相,自然状态下会分解,所以一般情况下都是将马氏体进行回火处理,得到回火马氏体组织或者其他组织。
F. 淬火为什么会使钢铁变硬
理由:
淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的刚性、硬度、耐磨性、疲劳强度以及韧性等。
通过淬火与不同温度的回火配合,可以大幅度提高金属的强度、韧性下降及疲劳强度。以钢的相变临界点为依据,加热淬火时要形成细小、均匀奥氏体晶粒,淬火后获得细小马氏体组织,淬火后得到马氏体基体上分布渗碳体的组织。这-组织状态具有高硬度和高耐磨性。
方式主要有:
1、等温淬火。
工件在等温盐浴中淬火,盐浴温度在贝氏体区的下部(稍高于Ms),工件等温停留较长时间,直到贝氏体转变结束,取出空冷。等温淬火用于中碳以上的钢,低碳钢一般不采用等温淬火。
2、表面淬火。
表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。表面淬火时通过快速加热,使刚件表面很快到淬火的温度,在热量来不及穿到工件心部就立即冷却,实现局部淬火。
3、感应淬火。
感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。
G. 为什么淬火使钢硬度变强
楼上的没答到要点哦,不过楼上已经说出一些知识了。钢中铁对碳的溶解度在常温极低,只有形成含碳量0.0008%的完全溶解的溶解度。多余的碳以渗碳体这种间隙化合物存在.但随着温度的上升,溶解能力上升.特别是在α型铁转换成γ铁时,溶解度上升很快,在1148度时能达到2.11%的最高溶解度.这也是钢和铸铁的分界点.好了
回答为什么淬火能提高硬度和强度.淬火要先加热,对于含碳量在0.8%以下的需要完全奥氏体化,而在其之上的钢为了防止晶粒过于粗大.只能加热到奥氏体加二次渗碳体的温度就可以了,保温一段时间,使铁对碳的达到最大溶解.因为碳因为在铁的溶解度下降时析出是需要一定时间的.而淬火是一个急剧冷却的过程,碳没有时间从铁中析出形成渗碳体.就直接形成了α型铁的过饱和的碳的固溶体.而大量多余的碳原子会使原来的铁原子排列产生严重的畸变而形成强烈的固溶强化.因为在金属中,溶剂中溶质的溶解度上升时会带来固溶体强度和硬度的上升和塑性和韧性的下降.这中现象就叫固溶强化.
H. 钢为什么淬火之后硬度会升高
对金属而言,强化机制(提高强度,也相当于提高硬度)类型主要有四种
位错强化、细晶强化、固溶强化、沉淀强化;钢主要有
渗碳体
、马氏体
、贝氏体(分为上贝氏体、下贝氏体)、奥氏体、
铁素体等相。碳化物最硬,马氏体其次,贝氏体再其次,奥氏体和铁素体硬度较低。
钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。淬火后得到的组织为马氏体组织或贝氏体组织,这两种组织硬度比较高。其硬度提高主要与位错强化、固溶强化、沉淀强化有关。
融入固溶体中的溶质原子造成晶格畸变,晶格畸变增大了位错运动的阻力,使滑移难以进行,从而使合金固溶体的强度与硬度增加。这种通过融入某种溶质元素来形成固溶体而使金属强化的现象称为固溶强化。
马氏体为是碳溶于α-Fe的过饱和的固溶体。马氏体内部有较多位错,这也是部分强化部分原因,当淬火后回火,析出渗碳体也能提高硬度。
上贝氏体由许多从奥氏体晶界向晶内平行生长的条状铁素体和在相邻铁素体条间存在的断续的,短杆状的渗碳体组成。下贝氏体由含碳过饱和的片状铁素体和其内部析出的微细的碳化物组成。
淬火产生什么变化?主要是原子排列方式发生变化,而引起组织和性能变化
I. 钢材"见火"(土语)后变硬的原因是什么
你好!
钢材“见火”学名也叫淬火,是一个最简单的热处理工艺,他使得材料的组织发生变化,淬火表面形成马氏体组织,该组织具有硬、脆性,所以钢材见火后变硬。
说的比较专业,不知道能看懂不,麻烦给个最佳,谢谢!
如有疑问,请追问。