『壹』 不锈钢焊接为什么老有气孔
产生不锈钢的气孔因素很多:1、母材或填充金属表面有锈、油污等。2、焊条未烘干,药皮的水分在高温分解产生气体,增加了高温金属的气体含量。3、线能量过小,熔池冷却速度快,不利于气体逸出,焊缝金属脱氧不足等都会导致气孔,不锈钢一般要求小电流多道焊,线能量必然很小,起弧收弧处更易产生气孔。4、焊工个人焊接技术也很重要。
『贰』 常见的焊接缺陷有哪几种产生原因有哪些
常见的焊接缺陷有哪几种?产生原因有哪些
①气孔:焊接时,熔池中的气泡在凝固时未能逸出而残留下来所形成的空穴。气孔可分为条虫状气孔、针孔、柱孔,按分布可分为密集气孔,链孔等。
气孔的生成有工艺因素,也有冶金因素。工艺因素主要是焊接规范、电流种类、电弧长短和操作技巧。冶金因素,是由于在凝固介面上排出的氮、氢、氧、一氧化碳和水蒸汽等所造成的。
②夹渣:焊后残留在焊缝中的溶渣,有点状和条状之分。产生原因是熔池中熔化金属的凝固速度大于熔渣的流动速度,当熔化金属凝固时,熔渣未能及时浮出熔池而形成。它主要存于焊道之间和焊道与母材之间。
③未熔合:熔焊时,焊道与母材之间或焊道与焊道之间未完全熔化结合的部分;点焊时母材与母材之间未完全熔化结合的部分,称之。
未熔合可分为坡口未熔合、焊道之间未熔合(包括层间未熔合)、焊缝根部未熔合。按其间成分不同,可分为白色未熔合(纯气隙、不含夹渣)、黑色未熔合(含夹渣的)。
产生机理:a.电流太小或焊速过快(线能量不够);b.电流太大,使焊条大半根发红而熔化太快,母材还未到熔化温度便覆盖上去。C.坡口有油污、锈蚀;d.焊件散热速度太快,或起焊处温度低;e.操作不当或磁偏吹,焊条偏弧等。
④未焊透:焊接时接头根部未完全熔透的现象,也就是焊件的间隙或钝边未被熔化而留下的间隙,或是母材金属之间没有熔化,焊缝熔敷金属没有进入接头的根部造成的缺陷。
产生原因:焊接电流太小,速度过快。坡口角度太小,根部钝边尺寸太大,间隙太小。焊接时焊条摆动角度不当,电弧太长或偏吹(偏弧)
⑤裂纹(焊接裂纹):在焊接应力及其它致脆因素共同作用下,焊接接头中区域性地区的金属原子结合力遭到破坏而形成的新介面而产生缝隙,称为焊接裂纹。它具有尖锐的缺口和大的长宽比特征。按其方向可分为纵向裂纹、横向裂纹,辐射状(星状)裂纹。按发生的部位可分为根部裂纹、弧坑裂纹,熔合区裂纹、焊趾裂纹及热响裂纹。按产生的温度可分为热裂纹(如结晶裂纹、液化裂纹等)、冷裂纹(如氢致裂纹、层状撕裂等)以及再热裂纹。
产生机理:一是冶金因素,另一是力学因素。冶金因素是由于焊缝产生不同程度的物理与化学状态的不均匀,如低熔共晶组成元素S、P、Si等发生偏析、富集导致的热裂纹。此外,在热影响区金属中,快速加热和冷却使金属中的空位浓度增加,同时由于材料的淬硬倾向,降低材料的抗裂效能,在一定的力学因素下,这些都是生成裂纹的冶金因素。力学因素是由于快热快冷产生了不均匀的组织区域,由于热应变不均匀而导至不同区域产生不同的应力联络,造成焊接接头金属处于复杂的应力——应变状态。内在的热应力、组织应力和外加的拘束应力,以及应力集中相叠加构成了导致接头金属开裂的力学条件。
⑥形状缺陷
焊缝的形状缺陷是指焊缝表面形状可以反映出来的不良状态。如咬边、焊瘤、烧穿、凹坑(内凹)、未焊满、塌漏等。
产生原因:主要是焊接引数选择不当,操作工艺不正确,焊接技能差造成。
常见焊接缺陷产生的原因及预防措施
你好,不同的焊接缺陷产生的机理和预防措施是不一样的。介绍如下:
形状缺欠
外观质量粗糙,鱼鳞波高低、宽窄发生突变;焊缝与母材非圆滑过渡。
主要原因:操作不当,返修造成。
危害:应力集中,削弱承载能力。
尺寸缺欠
焊缝尺寸不符合施工图样或技术要求。
主要原因:施工者操作不当
危害:尺寸小了,承载截面小; 尺寸大了,削弱了某些承受动载荷结构的疲劳强度。
咬边
原因:⒈焊接引数选择不对,U、I太大,焊速太慢。
⒉电弧拉得太长。熔化的金属不能及时填补熔化的缺口。
危害:母材金属的工作截面减小,咬边处应力集中。
弧坑
由于收弧和断弧不当在焊道末端形成的低洼部分。
原因:焊丝或者焊条停留时间短,填充金属不够。
危害:⒈减少焊缝的截面积;
⒉弧坑处反应不充分容易产生偏析或杂质集聚,因此在弧坑处往往有气孔、灰渣、裂纹等。
烧穿
原因:⒈焊接电流过大;
⒉对焊件加热过甚;
⒊坡口对接间隙太大;
⒋焊接速度慢,电弧停留时间长等。
危害:⒈表面质量差
⒉烧穿的下面常有气孔、夹渣、凹坑等缺欠。
焊瘤
熔化金属流淌到焊缝以外未熔化的母材上所形成的区域性未熔合。
原因:焊接引数选择不当; 坡口清理不干净,电弧热损失在氧化皮上,使母材未熔化。
危害:表面是焊瘤下面往往是未熔合,未焊透; 焊缝几何尺寸变化,应力集中,管内焊瘤减小管中介质的流通截面积。
气孔
原因:⒈电弧保护不好,弧太长。
⒉焊条或焊剂受潮,气体保护介质不纯。
⒊坡口清理不干净。
危害:从表面上看是减少了焊缝的工作截面;更危险的是和其他缺欠叠加造成贯穿性缺欠,破坏焊缝的致密性。连续气孔则是结构破坏的原因之一。
夹渣
焊接熔渣残留在焊缝中。易产生在坡口边缘和每层焊道之间非圆滑过渡的部位,焊道形状突变,存在深沟的部位也易产生夹渣。
原因:⒈熔池温度低(电流小),液态金属黏度大,焊接速度大,凝固时熔渣来不及浮出;
⒉运条不当,熔渣和铁水分不清;
⒊坡口形状不规则,坡口太窄,不利于熔渣上浮;
⒋多层焊时熔渣清理不干净。
危害:较气孔严重,因其几何形状不规则尖角、棱角对机体有割裂作用,应力集中是裂纹的起源。
未焊透
当焊缝的熔透深度小于板厚时形成。单面焊时,焊缝熔透达不到钢板底部;双面焊时,两道焊缝熔深之和小于钢板厚度时形成。
原因:⒈坡口角度小,间隙小,钝边太大;
⒉电流小,速度快来不及熔化;
⒊焊条偏离焊道中心。
危害:工作面积减小,尖角易产生应力集中,引起裂纹
未熔合
熔焊时焊道与母材之间或焊道与焊道之间未能完全熔化结合的部分。
原因:⒈电流小、速度快、热量不足;
⒉坡口或焊道有氧化皮、熔渣等,一部分热量损失在熔化杂物上,剩余热量不足以熔化坡口或焊道金属。
⒊焊条或焊丝的摆动角度偏离正常位置,熔化金属流动而覆盖到电弧作用较弱的未熔化部分,容易产生未熔合。
危害:因为间隙很小,可视为片状缺欠,类似于裂纹。易造成应力集中,是危险性较大的缺陷。
焊接裂纹
危害最大的一种焊接缺陷
在焊接应力及其它致脆因素共同作用下,材料的原子结合遭到破坏,形成新介面而产生的缝隙称为裂纹。它具有尖锐的缺口和长宽比大的特征,易引起较高的应力集中,而且有延伸和扩充套件的趋势,所以是最危险的缺陷。
望采纳,谢谢。...
焊接缺陷的的种类及成因?
焊接缺陷的分类:
①从巨集观上看,可分为裂纹、未熔合、未焊透、夹渣、气孔、及形状缺陷,又称焊缝金属表面缺陷或叫接头的几何尺寸缺陷,如咬边,焊瘤等。在底片上还常见如机械损伤(磨痕),飞溅、腐蚀麻点等其他非焊接缺陷。
②从微观上看,可分为晶体空间和间隙原子的点缺陷,位错性的线缺陷,以及晶界的面缺陷。微观缺陷是发展为巨集观缺陷的隐患因素。
六大焊接缺陷的形态及产生机理:
①气孔:焊接时,熔池中的气泡在凝固时未能逸出而残留下来所形成的空穴。气孔可分为条虫状气孔、针孔、柱孔,按分布可分为密集气孔,链孔等。
气孔的生成有工艺因素,也有冶金因素。工艺因素主要是焊接规范、电流种类、电弧长短和操作技巧。冶金因素,是由于在凝固介面上排出的氮、氢、氧、一氧化碳和水蒸汽等所造成的。
②夹渣:焊后残留在焊缝中的溶渣,有点状和条状之分。产生原因是熔池中熔化金属的凝固速度大于熔渣的流动速度,当熔化金属凝固时,熔渣未能及时浮出熔池而形成。它主要存于焊道之间和焊道与母材之间。
③未熔合:熔焊时,焊道与母材之间或焊道与焊道之间未完全熔化结合的部分;点焊时母材与母材之间未完全熔化结合的部分,称之。
未熔合可分为坡口未熔合、焊道之间未熔合(包括层间未熔合)、焊缝根部未熔合。按其间成分不同,可分为白色未熔合(纯气隙、不含夹渣)、黑色未熔合(含夹渣的)。
产生机理:a.电流太小或焊速过快(线能量不够);b.电流太大,使焊条大半根发红而熔化太快,母材还未到熔化温度便覆盖上去。C.坡口有油污、锈蚀;d.焊件散热速度太快,或起焊处温度低;e.操作不当或磁偏吹,焊条偏弧等。
④未焊透:焊接时接头根部未完全熔透的现象,也就是焊件的间隙或钝边未被熔化而留下的间隙,或是母材金属之间没有熔化,焊缝熔敷金属没有进入接头的根部造成的缺陷。
产生原因:焊接电流太小,速度过快。坡口角度太小,根部钝边尺寸太大,间隙太小。焊接时焊条摆动角度不当,电弧太长或偏吹(偏弧)
⑤裂纹(焊接裂纹):在焊接应力及其它致脆因素共同作用下,焊接接头中区域性地区的金属原子结合力遭到破坏而形成的新介面而产生缝隙,称为焊接裂纹。它具有尖锐的缺口和大的长宽比特征。按其方向可分为纵向裂纹、横向裂纹,辐射状(星状)裂纹。按发生的部位可分为根部裂纹、弧坑裂纹,熔合区裂纹、焊趾裂纹及热响裂纹。按产生的温度可分为热裂纹(如结晶裂纹、液化裂纹等)、冷裂纹(如氢致裂纹、层状撕裂等)以及再热裂纹。
产生机理:一是冶金因素,另一是力学因素。冶金因素是由于焊缝产生不同程度的物理与化学状态的不均匀,如低熔共晶组成元素S、P、Si等发生偏析、富集导致的热裂纹。此外,在热影响区金属中,快速加热和冷却使金属中的空位浓度增加,同时由于材料的淬硬倾向,降低材料的抗裂效能,在一定的力学因素下,这些都是生成裂纹的冶金因素。力学因素是由于快热快冷产生了不均匀的组织区域,由于热应变不均匀而导至不同区域产生不同的应力联络,造成焊接接头金属处于复杂的应力--应变状态。内在的热应力、组织应力和外加的拘束应力,以及应力集中相叠加构成了导致接头金属开裂的力学条件。
⑥形状缺陷
焊缝的形状缺陷是指焊缝表面形状可以反映出来的不良状态。如咬边、焊瘤、烧穿、凹坑(内凹)、未焊满、塌漏等。
产生原因:主要是焊接引数选择不当,操作工艺不正确,焊接技能差造成。
焊接缺陷(裂纹)概念 、形成缺陷原因、解决措施!!!(字越多越好、越详细越好!) 5分
1、产生裂纹的概念:
焊缝裂纹是焊接过程中或焊接完成后在焊接区域中出现的金属区域性破裂的表现。
焊缝金属从熔化状态到冷却凝固的过程经过热膨胀与冷收缩变化,有较大的冷收缩应力存在,而且显微组织也有从高温到低温的相变过程而产生组织应力,更加上母材非焊接部位处于冷固态状况,与焊接部位存在很大的温差,从而产生热应力等等,这些应力的共同作用一旦超过了材料的屈服极限,材料将发生塑性变形,超过材料的强度极限则导致开裂。裂纹的存在大大降低了焊接接头的强度,并且焊缝裂纹的尖端也成为承载后的应力集中点,成为结构断裂的起源。
裂纹可能发生在焊缝金属内部或外部,或者在焊缝附近的母材热影响区内,或者位于母材与焊缝交界处等等。根据焊接裂纹产生的时间和温度的不同,可以把裂纹分为以下几类:
a.热裂纹(又称结晶裂纹):
产生于焊缝形成后的冷却结晶过程中,主要发生在晶界上,金相学中称为沿晶裂纹,其位置多在焊缝金属的中心和电弧焊的起弧与熄弧的弧坑处,呈纵向或横向辐射状,严重时能贯穿到表面和热影响区。热裂纹的成因与焊接时产生的偏析、冷热不均以及焊条(填充金属)或母材中的硫含量过高有关。
b.冷裂纹:
焊接完成后冷却到低温或室温时出现的裂纹,或者焊接完成后经过一段时间才出现的裂纹(这种冷裂纹称为延迟裂纹,特别是诸如14MnMoVg、18MnMoNbg、14MnMoNbB等合金钢种容易产生此类延迟裂纹,也称之为延迟裂纹敏感性钢)。冷裂纹多出现在焊道与母材熔合线附近的热影响区中,其取向多与熔合线平行,但也有与焊道轴线呈纵向或横向的冷裂纹。冷裂纹多为穿晶裂纹(裂纹穿过晶界进入晶粒),其成因与焊道热影响区的低塑性组织承受不了冷却时体积变化及组织转变产生的应力而开裂,或者焊缝中的氢原子相互结合形成分子状态进入金属的细微孔隙中时将造成很大的压应力连同焊接应力的共同作用导致开裂(称为氢脆裂纹),以及焊条(填充金属)或母材中的磷含量过高等因素有关。
c.再热裂纹:
焊接完成后,如果在一定温度范围耿对焊件再次加热(例如为消除焊接应力而采取的热处理或者其他加热过程,以及返修补焊等)时有可能产生的裂纹,多发生在焊结过热区,属于沿晶裂纹,其成因与显微组织变化产生的应变有关。
2、产生裂纹的原因:
(1)焊件含有过高的碳、锰等合金元素。
(2)焊条品质不良或潮溼。
(3)焊缝拘束应力过大。
(4)母条材质含硫过高不适于焊接。
(5)施工准备不足。
(6)母材厚度较大,冷却过速。
(7)电流太强。
(8)首道焊道不足抵抗收缩应力。
3、解决措施:
(1)使用低氢系焊条。
(2)使用适宜焊条,并注意干燥。
(3)改良结构设计,注意焊接顺序,焊接后进行热处理。
(4)避免使用不良钢材。
(5)焊接时需考虑预热或后热。
(6)预热母材,焊后缓冷。
(7)使用适当电流。
(8)首道焊接之焊著金属须充分抵抗收缩应力。
手工电弧焊常见焊接缺陷产生的原因及预防措施
一、缺陷名称:气孔(Blow Hole)
1、原因
(1)焊条不良或潮溼。
(2)焊件有水分、油污或锈。
(3)焊接速度太快。
(4)电流太强。
(5)电弧长度不适合。
(6)焊件厚度大,金属冷却过速。
2、解决方法
(1)选用适当的焊条并注意烘干。
(2)焊接前清洁被焊部份。
(3)降低焊接速度,使内部气体容易逸出。
(4)使用厂商建议适当电流。
(5)调整适当电弧长度。
(6)施行适当的预热工作。
二、缺陷名称 咬边(Undercut)
1、原因
(1)电流太强。
(2)焊条不适合。
(3)电弧过长。
(4)操作方法不当。
(5)母材不洁。
(6)母材过热。
2、解决方法
(1)使用较低电流。
(2)选用适当种类及大小之焊条。
(3)保持适当的弧长。
(4)采用正确的角度,较慢的速度,较短的电弧及较窄的执行法。
(5)清除母材油渍或锈。
(6)使用直径较小之焊条。
三:缺陷名称:夹渣(Slag Inclusion)
1、原因
(1)前层焊渣未完全清除。
(2)焊接电流太低。
(3)焊接速度太慢。
(4)焊条摆动过宽。
(5)焊缝组合及设计不良。
2、解决方法
(1)彻底清除前层焊渣。
(2)采用较高电流。
(3)提高焊接速度。
(4)减少焊条摆动宽度。
(5)改正适当坡口角度及间隙。
四、缺陷名称:未焊透(Inplete Penetration)
1、原因
(1)焊条选用不当。
(2)电流太低。
(3)焊接速度太快温度上升不够,又进行速度太慢电弧冲力被焊渣所阻挡,不能给予母材。
(4)焊缝设计及组合不正确。
2、解决方法
(1)选用较具渗透力的焊条。
(2)使用适当电流。
(3)改用适当焊接速度。
(4)增加开槽度数,增加间隙,并减少根深。
五:缺陷名称:裂纹(Crack)
1、原因
(1)焊件含有过高的碳、锰等合金元素。
(2)焊条品质不良或潮溼。
(3)焊缝拘束应力过大。
(4)母条材质含硫过高不适于焊接。
(5)施工准备不足。
(6)母材厚度较大,冷却过速。
(7)电流太强。
(8)首道焊道不足抵抗收缩应力。
2、解决方法
(1)使用低氢系焊条。
(2)使用适宜焊条,并注意干燥。
(3)改良结构设计,注意焊接顺序,焊接后进行热处理。
(4)避免使用不良钢材。
(5)焊接时需考虑预热或后热。
(6)预热母材,焊后缓冷。
(7)使用适当电流。
(8)首道焊接之焊著金属须充分抵抗收缩应力。
六:缺陷名称:变形(Distortion)
1、原因
(1)焊接层数太多。
(2)焊接顺序不当。
(3)施工准备不足。
(4)母材冷却过速。
(5)母材过热。(薄板)
(6)焊缝设计不当。
(7)焊著金属过多。
(8)拘束方式不确实。
2、解决方法
(1)使用直径较大之焊条及较高电流。
(2)改正焊接顺序
(3)焊接前,使用夹具将焊件固定以免发生翘曲。
(4)避免冷却过速或预热母材。
(5)选用穿透力低之焊材。
(6)减少焊缝间隙,减少开槽度数。
(7)注意焊接尺寸,不使焊道过大。
(8)注意防止变形的固定措施。
七:其它焊接缺陷
搭叠(Overlap)
1、原因
(1)电流太低。
(2)焊接速度太慢。
2、解决方法
(1)使用适当的电流。
(2)使用适合的速度。
焊道外观形状不良(Bad Appearance)
1、原因
(1)焊条不良。
(2)操作方法不适。
(3)焊接电流过高,焊条直径过粗。
(4)焊件过热。
(5)焊道内,熔填方法不良。
2、解决方法
(1)选用适当大小良好的干燥......
焊接有哪些缺陷?
在焊接过程中,由于焊接规范选择、焊前准备和操作不当,会产生各种焊接缺陷,常见的有。
(一)焊缝尺寸不符合要求
主要是指焊缝过高或过低、过宽或过窄及不平滑过渡的现象。产生的原因是:
1、焊接坡口不合适。
2、操作时运条不当。
3、焊接电流不稳定。
4、焊接速度不均匀。
5、焊接电弧高低变化太大。
(二)咬边
主要是指沿焊缝的母材部位产生的沟槽或凹陷。产生的原因是:
1、工艺引数选择不当,如电流过大、电弧过长。
2、操作技术不正确,如焊条角度不对,运条不适当。
(三)夹渣
主要是指焊后残留在焊缝中的熔渣。产生的原因是:
1、焊接材料质量不好。
2、接电流太小,焊接速度太快。
(四)弧坑
主要是指焊缝熄弧处地低洼部分。产生的原因是:操作时熄弧太快,未反复向熄弧处补充填充金属。
(五)焊穿
主要是指熔化金属自坡口背面流出,形成穿孔的缺陷。产生的原因是:
1、焊件装配不当,如坡口尺寸不合要求,间隙过大。
2、焊接电流太大。
3、焊接速度太慢。
4、操作技术不佳。
(六)气孔
主要是指熔池中的气泡凝固时未能逸出而残留下来所形成的空穴。产生的原因是:
1、焊件和焊接材料有油污、铁锈及其它氧化物。
2、焊接区域保护不好。
3、焊接电流过小,弧长过长,焊接速度过快。
求:焊接缺陷(未焊透)概念 、形成缺陷原因、解决措施!!!(字越多越好、越详细越好!)
1、产生未焊透的概念:
母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的区域性未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。
2、产生原因:
(1)焊条选用不当。
(2)电流太低。
(3)焊接速度太快温度上升不够,又进行速度太慢电弧冲力被焊渣所阻挡,不能给予母材。
(4)焊缝设计及组合不正确。
3、解决措施:
(1)选用较具渗透力的焊条。
(2)使用适当电流。
(3)改用适当焊接速度。
(4)增加开槽度数,增加间隙,并减少根深。
钢结构施工常见的焊缝缺陷有哪些?并分析这些焊缝缺陷产生的主要原因
埋弧焊焊接时出现气孔,通常的原因有:焊接的表面有杂质,焊剂没有烘干
出现焊锡缺陷的原因有哪些
排除本身人为操作不熟练,技术不到位之外、就是焊锡选择、焊锡本身质量等等,一般情况下,就高不就低,含锡量越高的相对来说 出现这情况比较少,比如含一般线路板 元件之类,用50%以上甚至63%的含锡量的 焊接绝对没问题,但是要用含锡量10%以下的 基本就有焊接不牢固、焊点不光亮、虚焊 假焊 之类问题了。另外,尽量选择大型厂家的 有品牌的,焊锡质量有保证一点,有的厂家用回收锡, 锡含量不达标。 目前国内用的牌子推荐 强力 友邦
手工电弧焊常见焊接缺陷产生的原因及预防措施
你如果说的是氩弧焊焊接3毫米的板,如果是不锈钢板的话,你可以这样试试,先把电流大点进行点焊,密度要大点,点焊时尽量焊透它,然后在采取两头 中间 分段式进行满焊,这样的焊的话我想它的变形度会更小了。
『叁』 焊接后出现气孔是怎么回事
CO2焊时,可能产生以下三种气孔.
(1) CO气孔.产生原因是焊丝脱氧不足,以致大量FeO不能还原而熔于金属熔池中,凝固时与C发生以反应,生成Fe和CO,CO气体来不及逸出,形成气孔.保证焊丝有足够的脱氧元素,严格控制焊丝含碳量,即可减少CO气孔.
(2) 氮气孔.是由于CO2气流保护不好,或CO2气纯度不高(含有一定量的空气)而造成的.当氮大量地熔于金属熔池中,焊缝金属结晶凝固时,氮在金属中的熔解度突然降低,来不及逸出,从而形成气孔.影响CO2保护不好的因素有CO2气流量太小\焊接速度过快\焊接场地有风等.针对具体情况采取有效措施即可防止氮气孔的产生.
(3) 氢气孔.其形成过程与氮气孔形成过程相同.氢的来源与焊件\焊丝表面的铁锈\水分及油污等杂物\CO2气含水分等有关.严格清理焊件\焊丝表面杂物, CO2气体在提纯后使用,则可有效防止氢气孔的产生.
产生气孔的原因一般为:焊接过程中,焊枪过高;焊枪喷嘴飞溅堵塞;分气阀破损或未装;气体流量,压力不足;气体不配比;材料有水,锈,油污等杂物;焊接环境有风;焊枪老化破损漏气;人员技能不足,以上是造成气孔产生。
『肆』 为什么喷出来的粉末钢板又很多小气孔工件表面
喷出来的粉末钢板有很多小气孔,这就是粉末涂料中经常说的缩孔。
首先要检查专一下钢板上的铁锈等杂质是否属处理干净。其次,是否粉末涂料品质有问题,例如粉末涂料生产过程中,没有加脱气剂,做一个小板确认一下。再次,喷涂的设备和粉末涂料是否被污染了,混入了其它杂质。
『伍』 焊接时什么原因会产生气孔、夹渣、咬边应注意什么
1、咬边
产生原因: 焊接电流过大,电弧长度及角度不当,运条不当.
防止措施: 提高焊速或降低电流,改善电弧长度及焊条角度,运条时减少在坡口边缘的停留时间.
2、夹渣
产生原因: 操作技术不良,母材的接头处有难熔、比重较大的金属或非金属颗粒,焊条质量较差,
防止措施: 适当增大电流并适当摆动电弧搅动熔池,适当拉开电弧吹开熔渣或焊道上的异物
彻底清理焊接坡口处及附近的氧化层及脏物、残渣.
3、气孔
产生原因: 焊件接头处有油、锈、污垢,焊条未烘干或烘干不够,焊芯偏心,操作技术不良.
防止措施: 烘干焊条,将油、锈、污垢清理干净,可适当增大电流,降低焊速,控制熔池的大小在焊条直径的三倍以下,选用合格的焊条,碱性焊条电弧尽量低,酸性焊条在引弧、收弧时可适当拉长
注意事项
另外,焊接是一个局部的迅速加热和冷却过程,焊接区由于受到四周工件本体的拘束而不能自由膨胀和收缩,冷却后在焊件中便产生焊接应力和变形。重要产品焊后都需要消除焊接应力,矫正焊接变形。
现代焊接技术已能焊出无内外缺陷的、机械性能等于甚至高于被连接体的焊缝。被焊接体在空间的相互位置称为焊接接头,接头处的强度除受焊缝质量影响外,还与其几何形状、尺寸、受力情况和工作条件等有关。接头的基本形式有对接、搭接、丁字接(正交接)和角接等。
对接接头焊缝的横截面形状,决定于被焊接体在焊接前的厚度和两接边的坡口形式。焊接较厚的钢板时,为了焊透而在接边处开出各种形状的坡口,以便较容易地送入焊条或焊丝。坡口形式有单面施焊的坡口和两面施焊的坡口。选择坡口形式时,除保证焊透外还应考虑施焊方便,填充金属量少,焊接变形小和坡口加工费用低等因素。
厚度不同的两块钢板对接时,为避免截面急剧变化引起严重的应力集中,常把较厚的板边逐渐削薄,达到两接边处等厚。对接接头的静强度和疲劳强度比其他接头高。在交变、冲击载荷下或在低温高压容器中工作的联接,常优先采用对接接头的焊接。
搭接接头的焊前准备工作简单,装配方便,焊接变形和残余应力较小,因而在工地安装接头和不重要的结构上时常采用。一般来说,搭接接头不适于在交变载荷、腐蚀介质、高温或低温等条件下工作。
采用丁字接头和角接头通常是由于结构上的需要。丁字接头上未焊透的角焊缝工作特点与搭接接头的角焊缝相似。当焊缝与外力方向垂直时便成为正面角焊缝,这时焊缝表面形状会引起不同程度的应力集中;焊透的角焊缝受力情况与对接接头相似。
角接头承载能力低,一般不单独使用,只有在焊透时,或在内外均有角焊缝时才有所改善,多用于封闭形结构的拐角处。
焊接产品比铆接件、铸件和锻件重量轻,对于交通运输工具来说可以减轻自重,节约能量。焊接的密封性好,适于制造各类容器。发展联合加工工艺,使焊接与锻造、铸造相结合,可以制成大型、经济合理的铸焊结构和锻焊结构,经济效益很高。采用焊接工艺能有效利用材料,焊接结构可以在不同部位采用不同性能的材料,充分发挥各种材料的特长,达到经济、优质。焊接已成为现代工业中一种不可缺少,而且日益重要的加工工艺方法。
在近代的金属加工中,焊接比铸造、锻压工艺发展较晚,但发展速度很快。焊接结构的重量约占钢材产量的45%,铝和铝合金焊接结构的比重也不断增加。
未来的焊接工艺,一方面要研制新的焊接方法、焊接设备和焊接材料,以进一步提高焊接质量和安全可靠性,如改进现有电弧、等离子弧、电子束、激光等焊接能源;运用电子技术和控制技术,改善电弧的工艺性能,研制可靠轻巧的电弧跟踪方法。
另一方面要提高焊接机械化和自动化水平,如焊机实现程序控制、数字控制;研制从准备工序、焊接到质量监控全部过程自动化的专用焊机;在自动焊接生产线上,推广、扩大数控的焊接机械手和焊接机器人,可以提高焊接生产水平,改善焊接卫生安全条件。 (来源:焊接资讯)