⑴ 什么是高碳钢啊
“不锈钢”钢材:
首先请记住,没有真正不锈的钢材,如果不保养,所有的钢材都会生锈。但是下面这些钢材由于含有高于13%的铬,所以具有比上面提到的钢材高得多的抗锈能力。我要指出的是并没有一致的标准来规定钢材需要含多少铬才能被认为是不锈钢。在刀具界,实际上规定为13%,但ASM金属手册说“大于10%”,而另一些书记录又不同。另外,其它合金元素的含量对含铬量要求的影响很大,如果使用的合金得当,即使含铬量较低也能达到“不锈钢”品质。
420J: 比440系列低的碳含量(<0.5%),非常柔软,不能打磨,经热处理后硬度只有HRc52-55, 耐损性等各方面的性能并不太出众。因较容易切割及打磨, 故适宜用作大量生产厂制刀具,也被用于生产低成本刀具,420J钢因碳含量低而耐腐蚀能力极强, 故也是生产潜水刀具的理想钢材。但其过于柔软,不能用于日常实用刀具。
425M: 420系列钢材的改良品种, 定名为425M, 将含碳量提高至约0.55%, 并加进1%的钼, 经热处理后可达理想硬度(HRc58), 却保留了420系钢材之优良加工性, 故极宜应用于厂制刀具。美国BUCK及GERBER两大刀厂已于90年代选用425M作为其刀身材料。
440 A, 440 B, 440C: 含碳量和硬度由A-B-C逐次增加(A-0.75%,B-0.9%,C-1.2%)。这三种钢材的抗锈能力都不错,440A最好,而440C相比最低。SOG SEAL 2000用的是440A,Randall用440B来生产他们的不锈钢刀具。普遍感觉440A对于日常使用来说刚刚好,尤其是经过优质热处理的440A(SOG的440A热处理很受好评,不知道他们请谁来做这个),440B更加结实,而440C是最优秀的。440C用的非常普遍,是目前用在高档批量刀具市场上的优质不锈钢,其强度及锋利性甚于ATS-34,含铬量高达16-18%,可能是第二最常用的不锈钢(仅次于ATS-34),也是最早被刀匠接受的不锈钢,而且一直很受欢迎,尤其是在零下处理流程被开发出来后,这种处理加强了钢材的坚韧度。在打磨时,它的缺点是粘性比较大,而且升温很快,但它比任何碳钢都更容易打磨,用手锯切料也容易得多。440C的退火温度很低,硬度通常达到HRc56-58,耐蚀性和韧性都很强,现更广泛应用于手制刀及优质厂制刀具。保养得好的话,这种材料的刀刃是非常出色和耐用的。
AUS-6, AUS-8, AUS-10 (AKA 6A, 8A, 10A): 日本不锈钢材,大略与440A(AUS-6, 含碳0.65%)、440B(AUS-8, 含碳0.75%)、440C(AUS-10, 含碳1.1% )相似。AUS-6被用来制造Al Mar的刀具;Cold Steel使用AUS-8,从而使这种钢材变得很普遍,AUS-8是一种高碳低铬不锈钢,经过长时间证明具有非常优秀的折中特点,既坚硬又坚韧,既不易生锈又能保持锋利长久,刀锋耐损性及韧性皆达优异水平, 多被应用于日本制优质刀具。Cold Steel的热处理方法使AUS-8的打磨度不如ATS-34,但也使它更柔软,或许也更坚韧。AUS-10 的含碳量近似于440C,但是含铬量降低,因此抗锈能力也相应下降,不过也增强了坚韧性。这三种钢材都加入了钒(这是440系列没有的),因此增加了抗磨损能力。
154-CM: 美国产的优质不锈钢材,目前最热的高端不锈钢之一。含碳量约1.05%, 经热处理后硬度可达HRc60-61。154-CM是最初的美洲版本,铬含量达15%, 钼含量达4%,故定名为154CM。耐腐蚀性、刀锋耐损性及韧性都很强, 但售价较高。由近代手制刀之一代宗师R.W.Loverless率先所采用。它的加工和打磨虽没440C容易,但是154CM的成品无论硬度和坚韧度都比440C有明显优势。154CM 的命名并不符合命名规则,只是制造商的产品名。
ATS-34: 日本“日立金属工业”针对美制154CM 而开发的优质不锈钢, 用料和成份与154CM相近, 而各方面之性能都达到了154CM的标准, 但价格则较低。ATS-34是一种被手工刀和高端量产刀用得最广泛的昂贵不锈钢,现已成为手制及优质厂制刀具应用的主流。ATS-34也属于高碳钢,其硬度可作到HRc59-61,打磨度非常好,即使硬度如此高仍然具有足够的坚韧度,抗锈能力不如440系列,是目前最好的刀刃钢材之一。
ATS-55: 日本“日立金属工业”继ATS-34后开发的优质钢材,和ATS-34很相似,但去掉钼,加入了其它一些元素。目前对这种钢材所知不多,但它看起来具有似乎是保留了ATS-34的优秀打磨度并增加了坚韧性。钼是高速钢生产中一种昂贵而有用的元素,而刀锋并不需要用到高速钢,所以去掉钼可以大幅度降低钢材成本,且仍然保持了ATS-34的特性。整体而言, ATS-55性能稍逊于ATS-34, 但比G-2优秀。Spyderco选用这种钢材。
三美III(San Mai III): Cold Stell公司出品的一种非常昂贵,品质极佳的日本薄片层压钢材。以坚硬的高碳不锈钢夹在中间作为刀刃的核心,上下各加一层韧性和弹性都很好的不锈钢来辅助和增强,最后的成品具有两种材料钢的特性,这种碾压出来的钢材比特韧的AUS 8A坚固25%。三美III的特征是刀锋处的线涡纹路,遍及整个刀刃的边缘,是由于打磨时各钢层显露出来而形成的。每把刀的线纹长度各有不同,因为每一片三美III都是独一无二的。象AUS 8A不锈钢一样,三美III由现代精确传送熔炉热处理和零下低温淬水流程,改进钢材的微观结构,去掉杂质。最后的成品刀刃比一般不锈钢刀刃具有更好的弹性和保持性。
BG-42: 极优质不锈钢, 含碳量1.15%, 含钒量则高达1.2%,故钢材组织微粒细密, 经热处理后硬度可达HRc60-61, 加工性优, 耐腐蚀性极强, 韧性亦佳。BG-42最初被应用于航天工业, 作为制造滑轮及机轴等的材料, 因此价格颇高。Bob Loveless 最近宣称他从ATS-34转向这种钢材,这是个征兆,BG-42在某种程度上与ATS-34近似,而有两个最大的不同之处: BG-42有两倍于ATS-34的锰含量,和1.2%的钒含量 (ATS-34不含钒), 所以可知它比ATS-34的打磨度更好。Chris Reeves 在生产Sebenzas时也从ATS-34转向了BG-42。
Cowry X(RT-6): 日本“大同特殊钢 (株)”于1993年开发的超级粉末系列合金钢材, 为近代日本冶金技术的新突破, 现已被日本刀匠们应用于大型砍伐刀具, 钢材含碳量高达3%, 经热处理后硬度可达HRc67。
Cowry Y(CP-4): 日本“大同特殊钢 (株)”于1993年开发的优质粉末系列合金钢材, 含碳量达1.2%, 更罕有地混入金属元素“钶”达0.2%, 经热处理后硬度可达HRc63, 却仍保有极佳的延展性。
CPM440V: CPM(Crucible Particle Metallurgy)粉末系钢材,美国Crucible原料公司开发的新一代刃具钢, 厂方曾声称CPM440V为超级钢材(Super custom knife steel of the 90's),比目前市场上的所有不锈钢都经久耐用,但是它过于坚硬而难于打磨(因此它具有空前的刀锋保持性),但反过来,也就不需要经常打磨。虽然CPM440V之含碳量比传统的440C多出近一倍, 经热处理后得出之硬度却只为HRc57-58, 皆因受其它所含原素之影响(5%之钒, 17%之铬)。其真正杰出之处在于保留刀锋之耐损性及延展性这两方面, CPM440V售价很高, 故多应用于手制(刀匠手作)刀具。
CPM420V: 美国Crucible原料公司于1996年再次研制出较CPM440V更高一级的CPM钢材, 它比CPM440V多出近一倍的钒及钼含量, 故能保有更优越的刀锋耐损性及耐蚀性(比CPM440V优秀25-50%),或许比440V的坚韧度也更高。经热处理后的硬度则与CPM440V相等。CPM420V售价昂贵。
GIN-1(AKA G-2): 日本“日立金属工业”研发的优质钢材,性能与8A相近, 但硬度则比8A稍软(HRc57-58), 价格较低。一种很好的不锈钢,含碳量略低,含铬量略高,而钼含量比ATS-34低,是一种低成本的钢材,经常被 Spyderco选用。
ZDP-189 : 日本“日立金属工业”于1996年开发的新型粉末钢材, 其研发目标与“大同特殊钢 (株) ”的Cowry X钢材一脉相承, 是具有优良加工性能的超硬合金钢, ZDP-189含碳量达3%, 含铬量亦高达20%, 经热处理后硬度可达HRc67, 加工性能极优, 金属组织微粒比ATS-34及440-C更均匀细密, 耐蚀性及韧性均良好, 故“日立”对外宣称ZDP-189为“跨向21世纪的次世代刃具钢”。
⑵ 什么是高端金属结构材料
金属新材料按功能和应用领域可划分为高性能金属结构材料和金属功能材料。
高性能金属结构材料指与传统结构材料相比具备更高的耐高温性、抗腐蚀性、高延展性等特性的新型金属材料,主要包括钛、镁、锆及其合金、钽铌、硬质材料等,以及高端特殊钢、铝新型材等。
金属功能材料指具有辅助实现光、电、磁或其他特殊功能的材料,包括磁性材料、金属能源材料、催化净化材料、信息材料、超导材料、功能陶瓷材料等。
在众多品种中,我们建议重点关注稀土永磁材料。与其他材料相比,稀土具有优异的光、电、磁、催化等
物理特性,在新兴领域的应用急速增长,其中永磁材料是稀土应用领域最重要的组成部分,2009年永磁材料占稀土新材料消费总量的57%。在国家新兴产业政策的推动下,新能源汽车、风力发电、节能家电等领域将拉动稀土永磁材料钕铁硼磁体的需求出现爆发式增长。建议重点关注钕铁硼行业龙头中科三环、宁波韵升,以及稀土资源类企业包钢稀土、厦门钨业等。钢铁材料、稀有金属新材料、高温合金、高性能合金是属于金属类工程结构材料。
①、钢铁材料和稀有金属新材料
钢铁材料提高钢材的质量、性能,延长使用周期,在钢铁材料生产中,应用信息技术改造传统的生产工艺
,提高生产过程的自动化和智能化程度,实现组织细化和精确控制,提高钢材洁净度和高均匀度,出现低温轧制、临界点温度轧制、铁素体轧制等新工艺。
稀有金属新材料指高强、高韧、高损伤容限钛合金,以及热强钛合金、锆合金、难熔金属合金、钽钨合金、高精度铍材等。
②、高温合金和高性能合金
高温结构材料主要种类包括:高温合金、粉末合金、高温结构金属间化合物,以及高熔点金属间化合物等
⑶ 钢铁高端产品主要有哪些
汽车面板、家电面板、食品包装用板、高强度管线钢、四级以上螺纹钢、子午线轮胎用高强度用线材、高强拉索用钢、高级别不锈钢、高强结构钢和轴承钢、军工用钢、水下施工用板桩等。
⑷ 中国高端钢铁一年生产多少吨
高端钢材的划分标准在不同的企业,不同的行业,不同的场合不一样,回所以中国可以生产多少高答端钢材有不同的统计数据。在中小型民营企业里,把高速线材都叫做高端钢材。在一般国企和大型民营企业里,把板带材和管材叫做高端产品。在宝钢集团武钢集团把汽车面板,造船甲板,核能用钢,海上耐侯钢等叫做高端钢材。在新日铁住金,浦项钢铁等把宽幅面耐深冲,高强度结构,精密仪器仪表,大型航天设备,超高层建筑等用钢划分为高端钢材。所以说,按着国际上一般标准,我国的高端钢材产量只有500万吨左右,而总量日益增加,每年要进口3000万吨左右。
⑸ 做刀什么钢材最好都有些什么顶级钢材
一把刀的好坏不只是跟本身材料有关系,还和设计、热处理有很大关系,但是取决于的还是钢,如果没有好的钢材,不管是设计、还是热处理都是白搭,所以一把好的刀,三个方面也要做的到位,才能成就一把好刀。
刀刃钢材是决定你刀子能力表现的一个最重要因素。不同的刀刃钢材呈现不同的性能特征,好的刀具在硬度 韧性,防锈性,耐磨性,可打磨性,易加工性等性能都是比较突出的。
户外刀具,刀具的钢材对刀具的性能有非常直接影响,当然同样钢材的刀具,不同品牌在锋利度等性能上也有很大的差距。但是,无论如何,刀具的钢材决定了刀具的直接性能。下面我们一起来讲讲市面上比较好的刀具的钢材料。 常见的市面上的不锈钢材有: 440A-440B-440C、420C-420HC、154CM、ATS-34 ATS-55、N690CO等,
1. 440A-440B-440C
440系列为含碳量和硬度由A-B-C逐次增加(A-0.6-0.75%,B-0.75-0.95%,C-0.951.2%)。 440C 是一种比较优秀的高端不锈钢,硬度通常达到56-58 Rc。这三种钢材的抗锈能力都不错,440A最好,而440C相比最低。SOG SEAL 2000用的是440A,Randall 用440B 来生产他们的不锈钢刀具。
440C 用的非常普遍,大多数美国刀具以及部分欧洲刀具大多采用440C。如果你的刀标有“440”,那么它很可能比440A便宜;如果厂商用更贵的440C,他们会很愿意宣传这一点。普遍感觉440A对于日常使用来说刚刚好,尤其是经过优质热处理的440A。440B更加结实,而440C是优秀的。从品质来说,440C会低于N690CO,因为N690CO比440C有更高的钴含量。
所以在欧洲,440C作为中高端刀具使用,N690CO作为高端刀具使用。在美国很多品牌,包括戈博,巴克把440C作为其高端的刀具使用。在欧洲比如全球排名第一的FOX,其高端的军用系列刀具基本都采用N690CO,而起民用部分的中高端刀具,采用440C,在售价上N690CO的刀具售价大约是440C的一倍。
2. 420C-420HC
420C从系列上就看出是比440C低一档的刀具,其碳含量很低,钢材很软,达不到高碳钢的标准。近年来,巴克讲420C加入更多的碳的元素,其碳含量可以达到0.75%左右,取名420HC高碳钢。
从性能上说,420HC与国内标号4CR13相当,其硬度比440C略差,但在其他性能上都会远低于440C,但是其最大的优点是价格便宜。目前巴克几乎全系列都采用420HC,以降低其生产成本。但是巴克刀的品质优于其采用420HC,与其原有采用440C的刀具有一定的差距。购买巴克刀时,尽量选择老款的使用440C材质的刀具。
3、154CM
154-CM是美国目前使用的高端钢,但很长时间达不到高端制刀业期望的生产标准,所以未被广泛使用。站在刀具使用者的立场,154CM不愧为一个糟糕的选择,一个超级耐磨但超级磨不利的玩意儿。而且让人极其难受的是,在这种钢材的刀刃薄处受到挤压时,比如用154CM刀子去砍树劈柴,其刃口 总是趋向于碎裂。
这种钢的切割性能顶多只能算二流水准,其刃口具有某种“变滑(而不是微齿)”的特征,让你在切割时非得使力压着切不可 ,其性能接近下面的ATS-34,但是略差一些。美国品牌比如巴克,蜘蛛的高端刀具使用。在性能上与欧洲的高端钢N690CO,和日本的高端钢ATS-34有一定的差距。
4、ATS-34 ATS-55
ATS目前日本最热的高端不锈钢。154-CM是最初的美洲版本,ATS-34 是一种日本日立的产品,它和154-CM非常、非常相似,是高端高质不锈钢。 在性能上属于非常优秀的钢材,其性能接近欧洲高端钢,N690CO. 通常硬度约为 58-60 Rc,打磨度非常好,即使硬度如此高仍然具有足够的坚韧度。
抗锈能力不如前面提到的400系列。很多定制手工刀匠使用ATS-34,Spyderco 和 Benchmade 部分刀都选用它。 ATS-55和ATS-34很相似,但去掉钼,加入了其他一些元素。目前对这种钢材所知不多,但它看起来具有似乎是保留了ATS-34的优秀打磨度并增加了坚韧性。钼是高速钢生产中一种昂贵而有用的元素,而刀锋并不需要用到高速钢,所以去掉钼可以大幅度降低钢材成本,且仍然保持了ATS-34的特性。 Spyderco 选用这种钢材。
5、 N690CO
欧洲顶级的顶级高端不锈钢,欧洲几乎大的品牌都使用N690CO作为高端钢材。
N690高钴不锈钢,有时也被称为N690或N690Co,是奥地利伯勒尔(Bohler)钢铁公司研发的一种富钴不锈钢材质。
N690与如ATS-34和VG-10等其他钴钢拥有一些相似的性能,N690钢因FOX和极端武力(EXTREMA RATIO)经常使用而迅速在高端刀具中得到普及。对于率先在刀具制作中使用N690钢的极FOX刀具公司,N690更是受到了极大的好评。
它被认为是一种可以性能超过ATS-34,VG-10,154CM的特种高端钢材。N690目前主要被应用在欧洲的刀具制造业中。 N690中添加的钴元素提高了钢材的耐磨损性和刃部保持性,此外还确保了钢材中含有均匀的晶粒结构,令钢材的性能更趋稳定。 总而言之,N690是一种掺有钴、钼和钒的马氏体铬钢。
当用来制作工具和部件时,这种钢可以硬化到一个非常高的硬度水平。根据表面抛光需要钢材拥有良好的耐蚀性可知,这种材质可以被细研磨或抛光。这钢在冶炼过程中采用了电渣重熔(Electroslag remelting procere,ESR)的加工方式,所以钢材的纯净度与组织结构都获得了极大的提升。
⑹ 高端模具钢材的质量要求是些什么
(1)硬度
模具在工作时受力状态是复杂的,冷作模具的硬度一般选择在58HRC以上,而热作模具尤其是要求高的抗热疲劳性能的模具,通常硬度在45HRC左右。对于普通使用的塑料模具,一般硬度要求在35HRC左右。
(2)强度与韧性
零件在成形使模具承受着巨大的的冲击、扭曲等负荷,尤其是现代高速冲压、高速精密锻造和液态成形等技术以及一次成形技术的发展,模具承受着更大的负 荷,往往由于钢材的强度和韧度不够,造成型腔边缘或局部塌陷、崩刃或断裂而早期失效,因此模具热处理后应具有较高的硬度和韧度。
(3)耐磨性
零件成形时材料与模具型腔表面发生相对运动,使型腔表面产生了磨损,从而使得模具的尺寸精度、形状和表面的粗糙度发生变化而失效。磨损是一种复杂的过 程,影响因素很多,除取决于作用于模具的外界条件外,还在很大程度上取决于采用钢材的化学成分不均匀性、组织状态、力学性能等。
(4)疲劳性能
模具工作时承受着机械冲击和热冲击的交变应力,热作模具在工作的过程中,热交变应力更明显地导致模具热裂。受应力和温度梯度的影响而引起裂纹,往往是 在型腔表面形成浅而细的裂纹,它的迅速传播和扩展导致模具失效。另外,钢的化学成分及组织的不均匀,钢中存在的冶金缺陷如非金属夹杂物,气孔、显微裂纹等 均可导致钢的疲劳强度降低,因为在交变应力的作用下,首先在这些薄弱地区产生疲劳裂纹并发展为疲劳破坏。
(5)粘着性
工模具零件的表面由于两金属原子相互摭用或单相扩散的作用,往往会有一些被加工金属粘附着,尤其是一些切削、剪切工具和冲压工具的表面会产生粘附或结 疤现象,这会影响刃口的锋利程度和局部组织、化学成分的改变,使刃口部分崩裂或粘附金属的脱落划伤模具,使工件表面粗糙。因此良好的抗粘着性也是很重要的。
(6)抛光和蚀刻性能
随着模具,特别是塑料模具的广泛使用,低的表面粗糙度值影响到模具的寿命和生产效率及产品的质量。
⑺ 国内现在稀缺的高端钢材品种是什么
1、国内现在稀缺的高端钢材品种是记忆金属。
2、记忆金属具有复原性。金版属具有记忆,是一个偶然的发现:权60年代初,美国海军的一个研究小组从仓库领来一些镍钛合金丝做实验,他们发现这些合金丝弯弯曲曲,使用起来很不方便,于是就把这些合金丝一根根拉直。在试验过程中,奇怪的现象发生了,他们发现,当温度升到一定的数值时,这些已经拉直的镍钛合金丝突然又恢复到原来的弯曲状态,他们是善于观察的有心人,又反复做了多次试验,结果证实了这些细丝确实具有记忆。
⑻ 谁能为我介绍一下高端模具钢材对质量有什么具体要求
模具在现代制造业中占有日益重要的地们,特别是汽车和电器制造业中70%以上的零件采用模具制造加工。但目前我国高质量的模具大量依赖进口,分析其主要原因,不在于我们的优质钢炼钢水平,而是没有认识到整个模具钢质量的提高是一个系统控制过程。除冶金质量外,制造过程中的锻压加工、预备热处理、机械加工和最终热处理都将影响模具的内部组织和应力状态,从而决定模具的最终使用性能。据罗百辉介绍,在模具的制造过程中,模具的使用寿命和制成的精度、质量、表面性能,除与模具的设计、制造精度以及机床和操作等条件有关外,与模具材料及其热处理工艺也有密切关系。据有关的统计表明,模具的早期失效因材料选择不当和内部缺陷引起的约占10%左右,由热处理不当引起的约占50%左右,因此正确选择具有优良质量的模具钢材并进行正确的热处理,具有十分重要意义。模具钢的特性主要包括使用性能、工艺性能和冶金质量等三个方面。
1、模具钢在工作性能方面的要求
①硬度
模具在工作时受力状态是复杂的,如热作模具通常在交换的温度场下承受交变应力作用,因此它应具有良好的抗软化或塑性变形状态的能力,在长期工作环境下仍能保持模具的形状和尺寸精度。硬度是模具钢的生要性能之一。对冷作模具的硬度一般选择在58HRC以上,而热作模具尤其是要求高的抗热疲劳性能的模具,通常硬度在45HRC左右。对普通使用的塑料模具,一般硬度要求在35HRC左右。
②强度与韧性
零件在成形使模具承受着巨大的的冲击、扭曲等负荷,尤其是现代高速冲压、高速精密锻造和液态成形等技术以及一次成形技术的发展,模具承受着更大的负荷,往往由于钢材的强度和韧度不够,造成型腔边缘或局部塌陷、崩刃或断裂而早期失效,因此模具热处理后应具有较高的硬度和韧度。
③耐磨性
零件成形时材料与模具型腔表面发生相对运动,使型腔表面产生了磨损,从而使得模具的尺寸精度、形状和表面的粗糙度发生变化而失效。磨损是一种复杂的过程,影响因素很多,除取决于作用于模具的外界条件外,还在很大程度上取决于采用钢材的化学成分不均匀性、组织状态、力学性能等。
④疲劳性能
模具工作时承受着机械冲击和热冲击的交变应力,热作模具在工作的过程中,热交变应力更明显地导致模具热裂。受应力和温度梯度的影响而引起裂纹,往往是在型腔表面形成浅而细的裂纹,它的迅速传播和扩展导致模具失效。另外,钢的化学成分及组织的不均匀,钢中存在的冶金缺陷如非金属夹杂物,气孔、显微裂纹等均可导致钢的疲劳强度降低,因为在交变应力的作用下,首先在这些薄弱地区产生疲劳裂纹并发展为疲劳破坏。
⑤粘着性
工模具零件的表面由于两金属原子相互摭用或单相扩散的作用,往往会有一些被加工金属粘附着,尤其是一些切削、剪切工具和冲压工具的表面会产生粘附或结疤现象,这会影响刃口的锋利程度和局部组织、化学成分的改变,使刃口部分崩裂或粘附金属的脱落划伤模具,使工件表面粗糙。因此良好的抗粘着性也是很重要的。
⑥抛光和蚀刻性能
随着模具,特别是塑料模具的广泛使用,低的表面粗糙度值(有时甚至是镜面的程度)已经十分性必要,低的表面粗糙度值影响到模具的寿命和生产效率及制品的质量。高的表面质量可以减轻腐蚀(特别是局部点状腐蚀);减小开裂的危险,抛光钢材的化学成分、组织结构、硬度及碳化物分布必须均匀。大碳化物尤其是他们偏析并成带状时,对表面抛光性极为有害。特别重要的是,钢中不能含有没有发生变形的大的氧化物夹杂或偏析,因而必须严格控制冶炼和脱氧工艺。真空电弧重熔、电渣重熔效果良好,这种工艺目前已成为高级塑料模具钢的主要生产方式。即使是简单的真空脱气也有助于消除大的氧化物夹杂,这些冶炼工艺不仅能降低氧化物的含量,而且能使氧化物更细小、均匀,同时控制冶炼和脱氧过程,还可以改变夹杂物类型,使之软化并具有较好的塑韧性而提高抛光性能。
钢材中任何未闭合的空洞都会影响其抛光性能,因而热加工中压合疏松等冶金缺陷并保持组织的致密是十分必要的,这可以通过现代化的成形加工技术来实现。例如反复镦拔技术、旋转锻造技术、高温等静压制等可细化原始铸态组织,树枝晶内空隙。电渣重熔、真空电弧重熔精炼工艺,对钢材均匀性也十分有利。由热处理或表面硬化而引起的缺陷,应尽量避免导致硬度不均匀的脱碳。这些措施加上合理的成分设计及控制,就能生产出镜面加工性优异的钢。
此外,还应根据模具的工作条件和环境的差异,考虑所用模具钢应具有良好的热导性、抗腐蚀性、抗氧化性和导磁性等。
2、模具钢在工艺性能方面的要求
①可加工性
钢材的可加工性主要包括被切削加工性和冷热塑性变形两种,它取决于钢的化学成分、热处理后的组织和冶金生产的内部质量,近些年来,为了改善钢的可加工性,在一些钢中加入易切削元素或改变钢中的夹杂物的分布状态,从而提高模具钢的表面质量和减少模具的磨损。在热加工时,对一些高碳高合金的模具钢,特别是改善碳化物的形态和分布、晶粒大小和奥氏体合金化程度十分重要。
除了应具有良好的可加工性外,还要有良好的电加工性以及压印翻模加工性等。
②淬透性和淬硬性
模具对这两种性能的要求根据工作条件不同是各有侧重的,对于要求整个截面的硬度均匀性高的模具如锤锻模用钢,则其具有高的淬透性更显重要,而对只要求有高硬度的小型模具,如冲裁落料模具钢,则更偏重于高淬硬性。
③热处理变形性
模具零件在热处理时,要求变形小,各个方向要有相近的变化,且组织稳定。淬火变形小,除与淬火温度]时间和冷却介质等因素有关外,它主要取决于钢的成分均匀、冶金质量和组织稳定性。
④脱碳敏感性
模具钢在锻造、退火或淬火时,在无保护气氛下加热,其表面会产生氧化脱碳等缺陷,从而使模具在耐用度下降。脱碳除了与热处理工艺、设备有关外,就材料本身而言,主要取决于钢的化学成分、特别是碳含量,在含有较高的硅、钼等元素时,也会加剧脱碳。
此外,应根据模具的使用条件,应考虑模具的镜面抛光性、磨削性和电化学性等性能。
3、模具钢在冶金质量方面的要求
高的冶金质量才能发挥钢的基体本特性,模具钢的内部冶金质量与它的基本性能有同等的重要意义,在研究性能的同时,必须研究冶金质量影响因素。一般较常遇到模具钢的内外质量问题有以下几个方面:
①化学成分的均匀性
模具钢通常是含有多元素的合金钢,钢在锭模具中从液态凝固时,由于选分结晶的缘故,钢液中各种元素在凝固的结构中分布不均匀而形成偏析,这种化学成分的偏析将造成组织和性能的差异,它是影响钢材质量的重要因素之一。降低钢的偏析度,可以有效地提高钢的性能。近些年来,国内外很多冶金厂都在致力研究生产成分均匀、组织细化的钢材。
②有害元素的含量
硫和磷在钢凝固过程中形成磷化物和硫化物而在晶界沉淀,因而产生晶间脆性,使钢的塑性降低,过高的S、P含量,会使钢锭在轧制时易产生裂纹,而且会大大降低钢的力学性能。日本的松田幸纪等研究了S、P含量对含W(Cr)5%热作模具钢(H13)的韧性和热疲劳性能影响结果表明,如将W(S、P)的含量从0.025%和0.010%降到W(P)0.005%和W(S)0.001%时,其热疲劳裂纹的长度和数量将减少一半。日立金属公司将SKD61钢中的W(P)含量从0.03%降到0.001%时,可使钢45HRC时的冲击韧度由39.2J/cm2提高到127.5 J/cm2。此外,降低钢中的S、P含量还可以有效地提高钢的等向性。
③钢中的非金属夹杂物
质量良好的钢材不仅化学成分要符合技术标准的规定,并且钢中的非金属夹杂物的含量要尽可能地少,因为非金属夹杂物在钢中所占的体积虽然很小,但对钢材的性能影响却很大。减少钢中的非金属夹杂物是炼钢的主要任务之一。通常所指的钢中的非金属夹杂物,主要是指铁及其他合金元素与氧、硫、氮等作用所形成的化合物,如FeO、MnO、Al2O3、SiO2、FeS、MnS、AlN、VN等,以及在炼钢和浇注时带入的耐火材料,后者的成分也主要是Si、Al、Fe、Cr、Ca、Mg等的氧化物。钢中的非金属夹杂物就其来源,可以分为内在夹杂物和外来夹杂物,仙在的夹杂物是钢在液态及凝固过程中形成的化合物。
钢中的非金属夹杂物在基本种意义上呆以看成是一定尺寸的裂纹,它破坏了金属的连续性,引起应力集中,在外界应力的作用下,裂纹延伸很容易发展扩大而导致性能降低。塑性夹杂物的存在,随着锻轧过程延展变形,致使钢材产生各向异性。同时夹杂物抛光过程中的剥落,提高了模具的表面粗糙度。因此,对于大型和重要的模具来说,提高钢的纯净度是十分重要的。
4、白点
白点是热轧钢坯和大型锻件中比较常见的缺陷,是钢的内部破裂的一种。白点的存在对钢的性能有极为不利的影响,这种影响主要表现在使钢的力学性能降低,热处理时使锻件淬火开裂,或使用时发展成更为严重的破坏事故,所以在任何情况下,都不能使用有白点的锻件。不同的钢对白点的敏感程度是不同的,一般认为容易发生白点的钢有铬钢、铬钼钢、锰钢、锰钼钢、铬镍钼钢、铬钨钢等。其中以含W(C)大于0.30%、W(Cr)大于1%、W(Ni)大地2.5%的马氏体铬镍钢及铬镍钼钢等对白点的敏感性最大。白点的形成原因是钢中的氢的脱溶析出聚集,在钢的纵断面上形成的银亮白色粗晶状的圆形或椭圆形的斑点。它往往使锻件和坯材的内部产生裂纹。模具钢5CrNiMo、5CrMnMo等最容易发生白点,若增加碳化物元素Cr、Mo和V后可以降低白点的敏感性。这类钢在生产中一定要注意脱气和加强大锻件的锻后缓冷或去氢退火。
5、氧含量
对模具钢一般都未规定钢中的允许的气体含量。随着氧含量的增加,氧化物的颗粒和数量都随之增加,钢的疲劳性能降低,热裂纹也容易产生。有人曾对4Cr5MoSiV1钢进行过试验,氧含量最好不超过1.5*10-5,哪日本山阳特殊钢公司规定高纯净度钢氧含量不大于1.0*10-5。因此,近年来,为了提高模具的制造质量。国内外的模具钢逐渐在向低氧含量的方向发展。
6、碳化物的不均匀度
碳化物是绝大多数模具钢的必需组分,除可溶于奥氏体的碳化物外,还会有部分不能溶于奥氏体的残留碳化物。碳化物的尺寸、形态、分布对模具钢的使用性能等有十分重要的影响。关于碳化物的尺寸、形状和分布是与钢的冶炼方法、钢锭的凝固条件以及热加工变形条件等有关。过共析钢的碳化物可能在晶界形成风状碳化物或是在加工变形中碳化物被拉长而形成带状碳化物或者二者兼有,莱氏体模具钢中,存在一次碳化物和二次碳化物,在热变形的过程中,网状的共晶碳化物大多可以破碎,碳化物先沿变形方向延伸,产生带状,随着变形程度的增加,碳化物变得均匀、细小。碳化物的不均匀性对淬火变形、开裂、钢材的力学性能的影响较大。
7、偏析
偏析即钢的成分与组织不均匀性的表现,这是在模具钢的低倍组织的检验中常存在的一种缺陷。是钢锭在凝固过程中形成的,与钢的化学成分和浇注温度等有关。一般分为树枝状的偏析、方形偏析、点状偏析等。由于树枝状的偏析的存在,使负然各个不同的方向的力学性能表现出明显的差异。方形偏析是由于铸锭结晶时,在柱状晶的末端与锭心等轴晶区间,聚集了较多的杂质和孔隙而形成的。严重的方形偏析,对钢材的质量的影响是显着的,特别是切削加工量很大的零件或心部受力的模具零件。偏析除了影响模具钢力学性能的等向性外,对模具的抛光性能也有一定的影响。因此,国外相关的标准中有严格的规定。
8、疏松
疏松是钢的不致密性的表现。疏松多数出现在钢锭的上部及中部,在这些地方因为集中了较多的杂质和气体造成的。由于疏松缺陷的存在,降低了钢的强度和韧性,也严重地影响了加工后的表面的粗糙度,在一般的模具钢中的影响不是特别大,但如冷轧辊、大型的模块、冲头和塑料成形模具零件等都有较严格的要求。如深型腔的锻模和冲头要求疏松不超过1级或2级,用于表盘或透光件等的塑料模具用钢,要求疏松不超过1级。