㈠ 钢材受力有哪两种破坏形式它们对结构安全有何影响
钢材抄受力的五个阶段袭:
1.先是弹性阶段,然后到达屈服点,
2.进入屈服阶段,这个阶段特点是钢材的应力不增加,但是应变增大。
3.强度不变然后应变增大到一定地步时,进入强化阶段,这个阶段钢材强度显著提升,但是应变也增大。
4.最后到达强化的顶点时,进入颈缩阶段,这个阶段强度下降,应变增加。
5.弹性快到头了的时间点就是屈服点进入屈服阶段。
㈡ 简述塑性破坏和脆性破坏各有什么特征
钢材具有两种性抄质完袭全不同的破坏形式,即塑性破坏和脆性破坏。
塑性破坏是由于变形过大,超过了材料或构件可能的变形能力而产生的,仅在构
件的应力达到了钢材的抗拉强度
后才发生。塑性破坏前,总有较大的塑性变形
发生,且变形持续的时间较长,很容易及时发现而采取措施予以补救,不致引起严重后果。
脆性破坏前塑性变形很小,甚至没有塑性变形,计算应力可能小于钢材的屈服点,
断裂从应力集中处开始。由于脆性破坏前没有明显的预兆,无法及时觉察和采取
补救措施,而且个别构件的断裂常引起整个结构塌毁。在设计、施工和使用钢结构时,要特别注意防止出现脆性破坏
㈢ 梁钢筋配的过多或过粗有什么后果
其破坏特点是破坏始于受压区混凝土被先压碎。当钢筋混凝土梁内钢筋配置版多到一定程度时,钢筋权抗拉能力就过强,而作用(荷载)的增加,使受压混凝土应力首先达到抗压强度极限值,混凝土即被压碎,导致梁的破坏。此时钢筋仍处于弹性工作阶段,钢筋应力低于屈服强度。由于该梁在破坏前裂缝开展不宽,延伸不多,梁的挠度不大,梁是在没有明显预兆情况下由于受压区混凝土突然压碎而被破坏。
㈣ 钢材的两种破坏形式与其化学成分和组织结构的关系
钢材的破坏形式分为塑性破坏与脆性破坏两类。
塑性破坏的特征是:钢材在断裂版破坏时产生很权大的塑性变形,又称为延性破坏,其断口呈纤维状,色发暗,有时能看到滑移的痕迹。钢材的塑性破坏可通过采用一种标准圆棒试件进行拉伸破坏试验加以验证。钢材在发生塑性破坏时变形特征明显,很容易被发现并及时采取补救措施,因而不致引起严重后果。而且适度的塑性变形能起到调整结构内力分布的作用,使原先结构应力不均匀的部分趋于均匀,从而提高结构的承载能力。
脆性破坏的特征是:钢材在断裂破坏时没有明显的变形征兆,其断口平齐,呈有光泽的晶粒状。钢材的脆性破坏可通过采用一种比标准圆棒试件更粗,并在其中部位置车有小凹槽(凹槽处的净截面积与标准圆棒相同)的试件进行拉伸破坏试验加以验证。由于脆性破坏具有突然性,无法预测,故比塑性破坏要危险得多,在钢结构工程设计、施工与安装中应采取适当措施尽力避免。
钢材根据碳以及锰、硅、铬、钛等化学元素的比例不同,其内部结构和抗破环能力都是不同的,具体可以参考一些生活常识,像钢铁大桥的设计,就需要用到高强度和耐磨的钢材,比如EVERHARD-C500、EVERHARD-SP等。
㈤ 什么叫钢材的低温冷脆性求解答
低温冷脆性是指钢在低温状态下由韧性转化为脆性进而发生破坏的现象。影响低温脆性的因素很多,它不仅取决于晶格类型,还受材料的成分、组织等因素的影响.分别讨论材料成分、晶粒尺寸、显微组织对低温脆性转变温度的影响。可以从两个方面来解释:宏观上材料的断裂强度与屈服强度与温度有关系,对称度低的金属这个特点就更明显,一般是材料的断裂强度随温度的降低而减小,屈服强度会增加。这两个函数在脆韧转变温度处相交,在这个温度以下材料的屈服强度比断裂强度大,因此材料在受力时还未发生屈服便断裂了,材料显示脆性。
从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关,阻力增大,则材料屈服强度也相应增加,因为材料在塑性变形时主要依靠位错运动来完成的。对对称性低的金属,合金而言,温度降低位错运动的点阵阻力增加,原子热激活能力下降。因此材料屈服强度增加。
影响材料脆韧转变的因素有:
1.晶体结构,对称性低的体心立方以及密排六方金属,合金转变温度高,材料脆性断裂趋势明显,塑性差;
2.化学成分,能够使材料硬度,强度提高的杂质或者合金元素都会引起材料塑性和韧性变差,材料脆性提高;
3.显微组织,显微组织包含以下几个方面的影响:晶粒大小,细化晶粒可以同时提高材料的强度和塑性,韧性。细化晶粒提高材料韧性原因为,细化晶粒可以使基体变形更加均匀,晶界增多可以有效的阻止裂纹的扩张,因塑性变形引起的位错的塞积因晶界面积很大也不会很大,可以防止裂纹的产生;金相组织;
4.温度的影响:温度影响晶体中存在的杂质原子的热激活扩散过程,定扎位错原子气团的形成会使得材料塑性变差。
5.加载速度的影响:提高加载速度如同降低材料的温度,使得材料塑性变差,脆化温度升高。
6.试样形状以及尺寸的影响。
㈥ 铜中毒有什么后果
尽管铜是重要的必需微量元素,但应用不当,也易引起中毒反应。一般而言重金属都有一定的毒性,但毒性的强弱与重金属进入体内的方式及剂量有关。口服时,铜的毒性以铜的吸收为前提,金属铜不易溶解,毒性比铜盐小,铜盐中尤以水溶性盐如醋酸铜和硫酸铜的毒性大。
人体铜中毒的最早报告见于1785年,-17岁女性,因食含铜化合物食品过多而致。表现为腹痛,皮疹、腹泻、呕吐,呕吐物为绿色,不久死亡。据Luckey报道,当铜超过人体需要量的100~150倍时,可引起坏死性肝炎和溶血性贫血。
铜中毒有急性和慢性两种:
l、急性铜中毒 在日常生活中发生急性铜中毒的原因包括治疗上应用硫酸铜过量、用含铜绿的铜器皿存放和储存食物,以及有意无意吞服可溶性铜盐等。其中,与铜器皿存放食品、饮料或含醋食品、盐渍食品在铜器皿中烹调时产生毒性,在铜器皿中制茶也可引起中毒。
急性铜中毒的临床表现为急性胃肠炎,中毒者口中有金属味,流涎、恶心、呕吐、上腹痛、腹泻,有时可有呕血和黑便。口服大量铜盐后,牙齿、齿龈、舌苔蓝染或绿染,呕吐物呈蓝绿色、血红蛋白尿或血尿,尿少或尿闭,病情严重者可因肾衰而死亡;有些病人在中毒第2~3天出现黄疸。铜可与溶酶体的脂肪发生氧化作用,导致溶酶体膜的破裂,水解酶大量释放引起肝组织坏死;也可由红细胞溶血引起黄疸。另外,熔炼铜工人、焊接磨光镀铜物体工人、油漆厂研磨氧化铜粉工人,在吸入氧化铜细微颗粒后发生急性铜中毒,可以表现为急性金属烟尘热,表现为工作完毕后几小时出现发冷、发热,高达39℃以上,大量出汗,口渴,乏力,肌肉疼痛、头痛、头晕、咽喉干、咳嗽、胸痛、呼吸困难,有时恶心、食欲不振。一般夜间发病,次日早晨退热,呈一过性表现,但1~2天内感觉疲乏无力,若伴发支气管炎或支气管肺炎时症状可延续数日。患者血清铜可升高,血铜含量升高可达126~166μg/100ml(正常值为76.6μg/100ml)。另外铜盐和铜尘进入眼内可引起结膜炎、角膜溃疡、眼睑水肿等。
铜的另一毒理表现是损伤红细胞引起溶血和贫血。通常铜进入体内后主要在肝脏中累积,一旦超过肝脏的处理水平时,铜即释放入血,过量的Cu2+与-SH结合后在红细胞中大量积集,引起酶系统的氧化失活,损伤红细胞,增加细胞膜的通透性,破坏其稳定性并使细胞质和细胞器易于受损,变性血红蛋白增加;另一方面,铜与血红蛋白结合形成Heinz小体,使细胞内葡萄糖6-磷酸脱氢酶、谷胱甘肽还原酶失活,还原型谷胱甘肽减少,从而导致血红蛋白的自动氧化加剧,变性血红蛋白大量进入血液,最终导致溶血和贫血。
2、铜的慢性中毒一般因为长期大量的吸入含铜的气体或摄入含铜的食物所致。长期接触高浓度铜尘的工人,X射线照射胸透时可出现条索状纤维化,有的可出现结节影,上述改变可能是铜尘慢性刺激与肺部感染有关;神经系统的临床表现有记忆力减退、注意力不集中、容易激动,还可以出现多发性神经炎、神经衰弱综合症,周围神经系统比中枢神经系统敏感,脑电图显示脑电波节律障碍,出现弥漫性慢波节律等;消化系统方面可出现食欲不振、恶心呕吐、腹痛腹泻黄疸、部分病人出现肝肿大、肝功能异常等;在心血管方面可出现心前区疼痛,心悸,高血压或低血压;在内分泌方面,少部分病人出现阳痿,还可能出现蝶鞍扩大、非分泌性脑垂体腺瘤,表现为肥胖、面部潮红及高血压等。
㈦ 塑性破坏和脆性破坏有什么区别 详细
钢材具有两复种性质完全不同制的破坏形式,即塑性破坏和脆性破坏。 塑性破坏是由于变形过大,超过了材料或构件可能的变形能力而产生的,仅在构 件的应力达到了钢材的抗拉强度 后才发生。塑性破坏前,总有较大的塑性变形 发生,且变形持续的时间较长,很容易及时发现而采取措施予以补救,不致引起严重后果。 脆性破坏前塑性变形很小,甚至没有塑性变形,计算应力可能小于钢材的屈服点, 断裂从应力集中处开始。由于脆性破坏前没有明显的预兆,无法及时觉察和采取 补救措施,而且个别构件的断裂常引起整个结构塌毁。在设计、施工和使用钢结构时,要特别注意防止出现脆性破坏
㈧ 塑性破坏和脆性破坏有什么区别 详细
钢材具抄有两种性质完全不同的破坏形式,即塑性破坏和脆性破坏。 塑性破坏是由于变形过大,超过了材料或构件可能的变形能力而产生的,仅在构 件的应力达到了钢材的抗拉强度 后才发生。塑性破坏前,总有较大的塑性变形 发生,且变形持续的时间较长,很容易及时发现而采取措施予以补救,不致引起严重后果。 脆性破坏前塑性变形很小,甚至没有塑性变形,计算应力可能小于钢材的屈服点, 断裂从应力集中处开始。由于脆性破坏前没有明显的预兆,无法及时觉察和采取 补救措施,而且个别构件的断裂常引起整个结构塌毁。在设计、施工和使用钢结构时,要特别注意防止出现脆性破坏