⑴ 焊接较大钢板时如何保证不变形
等离子焊的变形会小很多。要不变形是很困难的,但可以通过合理的工版艺手权段把变形控制到最小。
控制变形的方法很多,根据不同的工件的结构,焊缝要求等,有不同的方法,但基本是有下面几个方面:
1、控制输入热量,用硬规范可以减少焊接变形,比如等离子焊,因为线能量高,焊接速度快,焊缝焊接时的热输入就少,变形就会少。
2、控制工件焊接过程的温度,比如分段焊,间隔焊等等。
3、利用变形本身的规律控制变形,根据先焊先变形,而先变形的产生了拘束应力,从而减少了后焊部分的变形。所以,选择合理的焊接顺序可以有效的减少焊接变形。
4、使用焊接胎具夹具。
5、反变形法,向变形可能发生的反方向预变形。
总之,减少焊接变形的方法很多,要根据具体情况和要求制订合理的焊接工艺是减少焊接变形的关键。
⑵ 钢材的焊接特性受什么影响
1、材料包括母材和焊接材料。与母材有关的影响因素有母材的化学成分,冶炼轧制状态、热处理状态、组织状态和力学性能等,其中尤以化学成分影响最大。
2、化学成分是钢材焊接性的主要影响因素。如果钢材只是依靠合金元素实现固溶强化,焊接过程中就容易使焊缝金属及热影响区与母材有良好的匹配性能。如果钢材为较复杂的合金系,并通过热处理、变形加工等方式实现固溶强化,则不易获得与母材完全匹配的焊缝金属或接头
3、钢的冶炼方法、轧制工艺及热处理状态等,对焊接性也都有不同程度的影响。例如,近年来研发的各种CF钢(抗裂钢)、TMCP钢(控轧钢)等,就是通过精炼提纯、控制轧制工艺等手段,以使其焊接性有重大改善。
4、焊接材料直接参与焊接过程一系列化学冶金反应,决定着焊缝金属的成分、组织和缺欠的形成。如果选择的焊接材料与母材匹配不当,不仅不能获得满足使用要求的接头,还会引起裂纹等缺欠的产生和脆化等力学性能的变化,所以正确选用焊接材料是保证获得优质焊接接头的重要冶金条件。
(2)什么钢材焊接不变型扩展阅读:
工艺条件因素
工艺条件因素包括焊接方法、焊接参数、预热、后热及焊后热处理等。它们对焊接性的影响,首先在于诸如其焊接热源的特点,功率密度、功率大小等,它们直接决定接头的温度场和热循环的各种参数,例如热输入的大小、高温停留时间、相变区的冷却速度,从而对焊缝及热影响区范围的大小、组织性能和产生缺欠的敏感性等有明显的影响。
其次是诸工艺方面的因素决定了熔池和近缝区的保护方式及冶金条件,例如熔渣保护、渣、气联合保护等都会影响冶金过程;采用焊前预热和焊后缓冷可降低接头的冷却速度,有利于降低接头的淬硬倾向和裂纹敏感性;选择合理的焊接顺序可以改善结构的拘束程度和应力状态。
在焊接之后消除一下焊接产生的残余应力就可以的这个是变形的主要原因,华云振动时效或者豪克能焊缝处理设备都可以的
⑷ 建筑工程钢结构焊接变形的种类有哪些
焊接变形来可分为线性缩短源、角变形、弯曲变形、扭曲变形、波浪形失稳变形等。
线性缩短:是指焊件收缩引起的长度缩短和宽度变窄的变形,分为纵向缩短和横向缩短。
角变形:是由于焊缝截面形状在厚度方向上不对称所引起的,在厚度方向上产生的变形。
波浪变形:大面积薄板拼焊时,在内应力作用下产生失稳而使板面产生翘曲成为波浪形变形。
扭曲变形:焊后构件的角变形沿构件纵轴方向数值不同及构件翼缘与腹板的纵向收缩不一致,综合而形成的变形形态。扭曲变形一旦产生则难以矫正。主要由于装配质量不好,工件搁置不正,焊接顺序和方向安排不当造成的,在施工中特别要引起注意。
构件和结构的变形使其外形不符合设计图纸和验收要求不仅影响最后装配工序的正常进行,而且还有可能降低结构的承载能力。如已产生角变形的对接和搭接构件在受拉时将引起附加弯矩,其附加应力严重时可导致结构的超载破坏。
⑸ 钢构件的焊接可以通过哪些措施控制焊接变形
焊接变形的控制措施
1)构件焊接工厂化
因工厂的焊接环境、设备及器具等条件比现场好,在满足运输限制的条件下,最大限度地在工厂完成焊接工作。
2)焊接施工方法上的控制
3) 设计方面
(1)选择合理的焊接尺寸和形式。焊接工作中,焊接尺寸是关键,它直接决定了焊接变形的大小和焊接工作量。焊缝尺寸越大,焊接量就越大,导致的焊接变形也越大。因此,我们应该尽量减少焊缝的尺寸和数量。设计时,在保证钢结构件的承载能力时,尽量采用小的焊缝截面积和坡口尺寸,对于板缝比较大的对接接头应选择“X”型破口[3]。
(2)减少焊缝数量。所谓的焊缝面积指的是熔合线范围以内的金属的面积。一般,坡口尺寸越大,焊缝截面积就越大,钢结构件冷却收缩时会引起很大的塑形变量,导致的收缩变形越大。因此,在设计过程中,尽量选择冲压件、型钢等代替焊件,以避免过多焊缝。为避免不必要的焊缝,还可以合理的安排肋板的位置和形状,优化肋板数量等[4]。
(3)合理设计结构形式和焊缝位置。我们在设计钢结构件时,应首先考虑焊接的实际工作量,应使工作量和部件总装时的焊接变形量均最小。选择薄板时,对板的厚度有严格要求,减少焊角尺寸和骨架间距。另外尽量不要设计曲线形或者弯曲的结构。在安排焊缝的位置时,应按照对称位置或者平行的方向安排焊缝,这样可以减少梁、柱等结构的扭曲变形。
4)控制措施
(1)合理控制焊接温度。钢结构的焊接变形有一部分是因为温度的控制不当引起的。在焊接过程中,控制好焊接温度能够有效地减少甚至避免焊接变形的产生。例如在对一个焊缝处的金属进行焊接时,要尽量避免影响周围的金属。焊接完成之后要进行迅速地降温,以免金属的余温对周围的金属产生影响。
(2)安排好钢结构的焊接顺序。焊接顺序安排不当也是使钢结构焊接产生变形的重要因素之一。例如,施工人员要消除挠曲变形,可以对钢结构进行上下焊接或者对角焊接。
(3)根据钢结构的用途选择合适的材料。钢结构的用途不同,其所承载的重力也就不相同。施工人员应该根据钢结构的用途选择合适的材料,同时,也应该根据焊缝的位置选择不同熔点的金属,从而控制钢结构在焊接过程中由于承载力和熔点的不同产生的变形[5]。
(4)钢结构焊接要选择合适的方法。焊接方法不同,钢结构焊接变形的程度也就不相同。焊接时线能量的高低在一定程度上决定焊接变形程度的大小。线能量高,则钢结构变形程度大,线能量低,则钢结构变形程度就小。例如埋弧焊可以有效地降低钢翼板焊接时的变形程度。另外,对腹板进行焊接时,施工人员也可以适当地选择埋弧焊。再比如,手弧焊可以应用在盖面焊接上。当钢结构焊接的截面积不相同时,施工人员选择的焊接方法也要做相应的改变,以降低焊接变形的程度。
5)矫正措施
钢构件焊接完成后,若出现残余变形,就必须得通过矫正措施来减小或者消除存在的残余变形。焊后的矫正措施主要有加热矫正和机械矫正,而加热矫正又包括整体加热和局部加热。
(1)加热矫正。当焊接的形状偏差较大时,可以采用整体加热矫正,也就是将钢构件整体加热到锻造温度以上,然后再进行矫正。但是此方法的缺陷是焊后整体加热容易产生冶金方面的副作用。因此,整体加热的应用受到一定的限制。局部加热矫正就是采用火焰对焊接钢结构件进行局部加热,由于热胀冷缩,在高温的地方,材料的热膨胀受到钢结构件刚性的制约,产生局部压缩变形,冷却后收缩,与焊后的伸长变形相互抵消。局部加热法无需专门的设备,操作简便灵活,应用广泛[6]。
(2)机械矫正法。机械矫正法主要是指借用外力促使构件形成与焊接变形相反方向的变形,达到与焊接变形相抵消的目的,进而实现变形矫正。机械矫正法效率高、成本低,通常情况下,工业上进行批量矫正时多采用大吨位压力机或者翼缘矫直机。如果只是简单的机械矫正也可以直接使用锤击,这主要是针对焊缝收缩引起的形变,用锤子击打焊缝,焊缝产生的延展会和焊缝由于收缩而产生的形变互相抵消,进而达到矫正的目的。
⑹ 钢结构焊接变形有哪些
你好,钢结构的焊接变形有:收缩变形、角变形、弯曲变形、波浪变形和扭曲变形。
因此,要根据不同的结构类型和不同的焊接母材,选择不同的焊接工艺来控制焊接变形的。
望采纳,谢谢。
⑺ 怎样防止钢结构焊接变形
防止焊接变形的方法
通过以上的分析,我们基本了解焊接变形的原因及变形的种类,针对焊接变形的原因和种类从焊接工艺上进行改进,可以有效防止和减少焊接变形所带来的危害。下面,我们主要介绍几种常见的防止焊接变形的方法。
1. 反变形法
在焊前进行装配时,预置反方向的变形量为抵消(补偿)焊接变形,这种方法叫做反变形法。
为8—12mm厚的钢板V形坡口单面对接焊时,采用反变形法以后,基本消除了角变形。
2. 利用装配和焊接顺序来控制变形;
采用合理的装配和焊接程序来减少变形,这在生产实践中是行之有效的好办法,如图2(a)所示为一箱形梁,由于焊缝不对称,焊后产生下挠弯曲变形。解决办法是由两人或四人,对称地先焊只有两条焊缝的一侧,如图2(b)中焊缝1和1然后就造成了如图2 (c)的上拱变形。由于这两条焊缝焊后增加了箱形梁的刚性。当焊接另一侧的两条焊缝时,如先焊图2(d)中焊缝2和2,最后再焊图2(e)中焊缝3和3,就基本上防止了变形。
有许多结构截面形状对称,焊缝布置也对称,但焊后却发生弯曲或扭曲的变形,这主要是装配和焊接顺序不合理引起的,也就是各条焊缝引起的变形,未能相互抵消,于是发生变形。
焊接顺序是影响焊接结构变形的主要因素之一,安排焊接顺序时应注意下列原则:
1)尽量采用对称焊接。对于具有对称焊缝的工作,最好由成对的焊工对称进行焊接。这样可以使由各焊缝所引起的变形相互抵消一部分。
2)对某些焊缝布置不对称的结构,应先焊焊缝少的一侧。
3)依据不同焊接顺序的特点,以焊接程序控制焊接变形量。常见的焊接顺序有五种,即:
a.分段退焊法
这种方法适用于各种空间的位置的焊接,除立焊外,钢材较厚、焊缝较长时都可以设挡弧板,多人同时焊接。其优点是可以减小热影响区,避免变形。每段长应为0.5—1m。见图2(f)
b.分中分段退焊法
这种方法适用于中板或较薄的钢板的焊接,它的优点是中间散热快,缩小焊缝两端的温度差。焊缝热影响区的温度不至于急剧增高,减少或避免热膨胀变形。这种方法特别适用于平焊和仰焊,横焊一般不采用,立焊根本不能用。见图2(g)
c.跳焊法
这种方法除立焊外,平焊、横焊、仰焊三种方法都适用,多用在6—12mm厚钢板的长焊缝和铸铁、不锈钢、铜的焊接上,可以分散焊缝热量,避免或减小变形。钢材每段焊缝长度在200—400mm之间;铸铁焊件按铸铁焊接规范处理;不锈钢和铜由于导热快,每段长不宜超过200mm (薄板应短些)。
d.交替焊法
这种焊法和跳焊法基本相同,只是每段焊接距离拉长,特别适用于薄板和长焊缝。见图2(i)
e.分中对称法
这种方法适用于焊缝较短的焊件,为了减小变形,由中心分两端一次焊完。见图2(j)
3.刚性固定法
刚性固定法减小变形很有效,且焊接时不必过分考虑焊接顺序。缺点是有些大件不易固定,且焊后撤除固定后,焊件还有少许变形和较大的残余应力。这种方法适用于焊接厚度小于6mm及韧性较好的薄壁材料。如果与反变形法配合使用则效果更好。
对于形状复杂,尺寸不大,又是成批生产的焊件,可设计一个能够转动的专用焊接胎具,既可以防止变形,又能提高生产率。
当工件较大,数量又不多时,可在容易发生变形的部位临时焊上一些支撑或拉杆,增加工件的刚性,也能有效的减少焊接变形。
3. 散热法
散热法又称强迫冷却法,即将焊接处的热量迅速散走,使焊缝附近的金属受热面大大减少,达到减小焊接变形的目的。图 3(a)为水浸法示意图,常用于表面堆焊和焊补。图3(b)是散热法示意图,用紫铜作散热垫,有的还钻孔通冷却水,这些垫板越靠近焊缝效果越好。但散热法比较麻烦,且对于淬火倾向大的钢材不宜采用,否则易裂。
4. 锤击焊缝法
锤击焊缝法,即用圆头小锤对焊缝敲击,可减少焊接变形和应力。因此对焊缝适当锻延,使其伸长来补偿这个缩短,就能减小变形和应力。锤击时用力要均匀,一般采用0.5Kg—1.0Kg的手锤,其端部为圆角(R=3—5mm)。底层和表面焊道一般不锤击,以免金属表面冷作硬化。其余各道焊完一道后立刻锤击,直至将焊缝表面打出均匀致密的点为止。
常见复杂构件防止变形的方法
1. 钢架的焊接
钢架焊接的关键问题,是如何保证强度和防止变形。从工艺上保证强度能适应载荷的变化,其变形量不致影响安装和使用的要求,因此:
1)焊缝的高度和长度,要按图施工。装配误差要小,坡口要清理干净。
2)钢架的焊接一般先焊腹杆与节点板之间的焊缝,然后再焊上、下弦与节点板之间的焊缝,焊接顺序不应集中,而应在节点间间隔跳开焊接。
⑻ 焊接H型钢怎么不变形
对称焊,板厚的话对称多道焊。
⑼ 用二保焊把钢板焊成H钢用什么方法焊接不变形
首先可以负责任的告诉你,受热就变形!不可能不变形!
我们唯一能做的就专是尽量减少变形属和变形后的校正!而最体现水平的就是变形的控制!
方法如下:
1.单根H钢拼装好以后需要在凹槽里面加装四方铁板或者三角筋板,间隔1.5米或者2米加一块(点焊结实)
2.焊接时不可过热,温度过高!受热要均匀,拼接的H钢有四条焊缝,切不可一条焊缝一次性全部焊完,如果焊缝高度一次性焊不起来,千万不可强行焊满!
3.焊接时把H钢的平面放到平台上并且点焊加固!这样就可以焊接了,焊接时先焊20公分,再到反面错开焊缝再焊20公分,焊完20公分再次换面……以此循环!焊到头以后不着急补缺,把工字钢翻面再按照第一次焊接的路数再次打底,但是这一次可以打完底再翻面……总之就是一个降低受热的过程!相当麻烦,但要有耐心,因为一旦弯了变形了再矫正处理会浪费更多的时间和成本!
⑽ 什么钢材可以焊接还不会变形不会断
钢材中的结构钢都可以焊接,只要焊缝设计合理,也可以保证与母材强度相等,即不会断。焊接时会有变形,但在制作时通过采取措施也可以防止。