① 影响钢材发生冷脆的化学元素是哪些
1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%.碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性.
2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅.如果钢中含硅量超过0.50-0.60%,硅就算合金元素.硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢.在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%.硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢.含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片.硅量增加,会降低钢的焊接性能.
3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%.在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%.含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等.锰量增高,减弱钢的抗腐蚀能力,降低焊接性能.
4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏.因此通常要求钢中含磷量小于0.045%,优质钢要求更低些.
5、硫(S):硫在通常情况下也是有害元素.使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹.硫对焊接性能也不利,降低耐腐蚀性.所以通常要求硫含量小于0.055%,优质钢要求小于0.040%.在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢.
6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性.铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素.
7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性.镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力.但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢.
8、 钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变).结构钢中加入钼,能提高机械性能. 还可以抑制合金钢由于火而引起的脆性.在工具钢中可提高红性.
9、钛(Ti):钛是钢中强脱氧剂.它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性.改善焊接性能.在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀.
10、钒(V):钒是钢的优良脱氧剂.钢中加0.5%的钒可细化组织晶粒,提高强度和韧性.钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力.
11、钨(W):钨熔点高,比重大,是贵生的合金元素.钨与碳形成碳化钨有很高的硬度和耐磨性.在工具钢加钨,可显著提高红硬性和热强性,作切削工具及锻模具用.
12、铌(Nb):铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降.在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力.铌可改善焊接性能.在奥氏体不锈钢中加铌,可防止晶间腐蚀现象.
13、钴(Co):钴是稀有的贵重金属,多用于特殊钢和合金中,如热强钢和磁性材料.
14、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜.铜能提高强度和韧性,特别是大气腐蚀性能.缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显著降低.当铜含量小于0.50%对焊接性无影响.
15、铝(Al):铝是钢中常用的脱氧剂.钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08Al钢.铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能和耐高温腐蚀的能力.铝的缺点是影响钢的热加工性能、焊接性能和切削加工性能.
16、硼(B):钢中加入微量的硼就可改善钢的致密性和热轧性能,提高强度.
17、氮(N):氮能提高钢的强度,低温韧性和焊接性,增加时效敏感性.
18、稀土(Xt):稀土元素是指元素周期表中原子序数为57-71的15个镧系元素.这些元素都是金属,但他们的氧化物很象“土”,所以习惯上称稀土.钢中加入稀土,可以改变钢中夹杂物的组成、形态、分布和性质,从而改善了钢的各种性能,如韧性、焊接性,冷加工性能.在犁铧钢中加入稀土,可提高耐磨性.
② 请问钢材的低温冷脆性,影响脆性破坏的因素是哪些
低温冷脆性是指钢在低温状态下由韧性转化为脆性进而发生破坏的现象。影响低温脆性的因素很多,它不仅取决于晶格类型,还受材料的成分、组织等因素的影响.分别讨论材料成分、晶粒尺寸、显微组织对低温脆性转变温度的影响。可以从两个方面来解释:宏观上材料的断裂强度与屈服强度与温度有关系,对称度低的金属这个特点就更明显,一般是材料的断裂强度随温度的降低而减小,屈服强度会增加。这两个函数在脆韧转变温度处相交,在这个温度以下材料的屈服强度比断裂强度大,因此材料在受力时还未发生屈服便断裂了,材料显示脆性。
从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关,阻力增大,则材料屈服强度也相应增加,因为材料在塑性变形时主要依靠位错运动来完成的。对对称性低的金属,合金而言,温度降低位错运动的点阵阻力增加,原子热激活能力下降。因此材料屈服强度增加。
影响材料脆韧转变的因素有:
1.晶体结构,对称性低的体心立方以及密排六方金属,合金转变温度高,材料脆性断裂趋势明显,塑性差;
2.化学成分,能够使材料硬度,强度提高的杂质或者合金元素都会引起材料塑性和韧性变差,材料脆性提高;
3.显微组织,显微组织包含以下几个方面的影响:晶粒大小,细化晶粒可以同时提高材料的强度和塑性,韧性。细化晶粒提高材料韧性原因为,细化晶粒可以使基体变形更加均匀,晶界增多可以有效的阻止裂纹的扩张,因塑性变形引起的位错的塞积因晶界面积很大也不会很大,可以防止裂纹的产生;金相组织;
4.温度的影响:温度影响晶体中存在的杂质原子的热激活扩散过程,定扎位错原子气团的形成会使得材料塑性变差。
5.加载速度的影响:提高加载速度如同降低材料的温度,使得材料塑性变差,脆化温度升高。
6.试样形状以及尺寸的影响。
③ 低温下承受较大动荷载的焊接结构用的钢,要对哪些化学元素的含量加以限制为什么
应控制P、S、N、O、C等元素的含量。尤其是P能显著降低钢的低温冷脆性和可焊性;S使钢热脆性增加,降低可焊性;N和O使钢的时效敏感性增加;含碳量增加(当C>0.3%)时,钢的可焊性降低,脆性增加。这种条件下,不能使用沸腾钢。
④ 影响钢材发生冷脆的化学元素是哪些
影响钢材发生冷脆的化学元素主要有氮和磷,而使钢材发生热脆的化学元素主要是氧和硫。
对于钢材,脆性越高其硬度越大,抗弯曲强度越高,而对于塑性较强的钢材来说正好与之相反,塑性强度大的钢材其硬度低,易弯曲不易折断,对于这两种钢材来说其性能有明显的差别。
冷脆性只发生在具有体心立方晶格的金属中。锅炉与压力容器中广泛采用的低碳钢及低合金钢都是体心立方晶格型,所以会发生遇冷变脆的现象。而面心立方晶格的金属,如铝、铜、镍都不会产生冷脆现象。
(4)什么成分影响钢材低温扩展阅读:
加工硬化降低了钢材的韧性,同时使韧脆转变温度增加。这种影响随钢材类型不同及加工硬化量的大小而变化。对于冲压封头,试验结果表明,冷压封头的韧脆转变温度高于热压封头,且冲击韧度值也有所减小。
对于冷脆性的材料会在温度变低的情况下脆性急剧增加,因此,选用冷脆性材料时因注意使用的环境以及温度等的影响因素,尽量避免不必要的意外发生,在选材时要把温度对钢材的影响因素考虑在内。
⑤ 钢材的低温冷脆性是怎么一回事
1.热脆-硫的影响 硫是由生铁及燃料带入钢中的杂质。在固态下,硫在铁中的溶解度极小,而是以FeS的形态存在于钢中。由于FeS的塑性差,使含硫较多的钢脆性较大。更严重的是,FeS与Fe可形成低熔点(985℃)的共晶体,分布在奥氏体的晶界上。当钢加热到约1200℃进行热压力加工时,晶界上的共晶体已溶化,晶粒间结合被破坏,使钢材在加工过程中沿晶界开裂,这种现象称为热脆性。为了消除硫的有害作用,必须增加钢中含锰量。锰与硫优先形成高熔点(1620℃)的硫化锰,并呈粒状分布在晶粒内,它在高温下具有一定塑造性,从而避免了热脆性。硫化物是非金属夹杂物,会降低钢的机械性能,并在轧制过程中形成热加工纤维组织。因此,通常情况下,硫是有害的杂质。在钢中要严格限制硫的含量。但含硫量较多的钢,可形成较多的MnS,在切削加工中,MnS能起断屑作用,可改善钢的切削加工性,这是硫有利的一面。 2.冷脆---磷的影响 磷由生铁带入钢中,在一般情况下,钢中的磷能全部溶于铁素体中。磷有强烈的固溶强化作用,使钢的强度、硬度增加,但塑性、韧性则显著降低。这种脆化现象在低温时更为严重,故称为冷脆。一般希望冷脆转变温度低于工件的工作温度,以免发生冷脆。而磷在结晶过程中,由于容易产生晶内偏析,使局部地区含磷量偏高,导致冷脆转变温度升高,从而发生冷脆。冷脆对在高寒地带和其它低温条件下工作的结构件具有严重的危害性,此外,磷的偏析还使钢材在热轧后形成带状组织。因此,通常情况下,磷也是有害的杂质。在钢中也要严格控制磷的含量。但含磷量较多时,由于脆性较大,在制造炮弹钢以及改善钢的切削加工性方面则是有利的。
⑥ 请问使钢材所有性能都下降的元素是什么
钢材的质量及性能是根据需要而确定的,不同的需要,要有不同的元素含量。
(1)碳:含碳量越高,刚的硬度就越高,但是它的可塑性和韧性就越差。
(2)硫:是钢中的有害杂物,含硫较高的钢在高温进行压力加工时,容易脆裂,通常叫作热脆性。
(3)磷:能使钢的可塑性及韧性明显下降,特别的在低温下更为严重,这种现象叫作冷脆性.在优质钢中,硫和磷要严格控制.但从另方面看,在低碳钢中含有较高的硫和磷,能使其切削易断,对改善钢的可切削性是有利的。
(4)锰:能提高钢的强度,能消弱和消除硫的不良影响,并能提高钢的淬透性,含锰量很高的高合金钢(高锰钢)具有良好的耐磨性和其它的物理性能。
(5)硅:它可以提高钢的硬度,但是可塑性和韧性下降,电工用的钢中含有一定量的硅,能改善软磁性能。
(6)钨:能提高钢的红硬性和热强性,并能提高钢的耐磨性。
(7)铬:能提高钢的淬透性和耐磨性,能改善钢的抗腐蚀能力和抗氧化作用。
(8)钒:能细化钢的晶粒组织,提高钢的强度,韧性和耐磨性.当它在高温熔入奥氏体时,可增加钢的淬透性;反之,当它在碳化物形态存在时,就会降低它的淬透性。
(9)钼:可明显的提高钢的淬透性和热强性,防止回火脆性,提高剩磁和娇顽力。
(10)钛:能细化钢的晶粒组织,从而提高钢的强度和韧性.在不锈钢中,钛能消除或减轻钢的晶间腐蚀现象。
(11)镍:能提高钢的强度和韧性,提高淬透性.含量高时,可显著改变钢和合金的一些物理性能,提高钢的抗腐蚀能力。
(12)硼:当钢中含有微量的(0.001-0.005%)硼时,钢的淬透性可以成倍的提高。
(13)铝:能细化钢的晶粒组织,阻抑低碳钢的时效.提高钢在低温下的韧性,还能提高钢的抗氧化性,提高钢的耐磨性和疲劳强度等。
(14)铜:它的突出作用是改善普通低合金钢的抗大气腐蚀性能,特别是和磷配合使用时更为明显。
⑦ 钢材的低温冷脆性是怎么一回事
低温冷脆性指随着温度的降低,金属材料强度有所增加,而韧性下降这一种现象的称呼。材料的冲击吸收功随温度降低而降低,当试验温度低于Tk(韧脆临界转变温度)时,冲击吸收功明显下降,材料由韧性状态变为脆性状态,这种现象称为低温脆性。
材料由延性破坏转变到脆性破坏的上限温度称为韧脆转变温度。为防止发生低温脆性破坏,钢材的最低允许工作温度就应高于韧脆转变温度的上限。
(7)什么成分影响钢材低温扩展阅读
温度是影响金属材料和工程结构断裂方式的重要因素之一。许多断裂事故发生在低温。这是由于温度对工程上广泛使用的低中强度结构钢和铸铁的性能影响很大,随着温度的降低,钢的屈服强度增加韧度降低。体心立方金属存在脆性转变温度是其脆性特点之一。
随着温度降低,在某一温度范围内,缺口冲击试样的断裂形式由韧性断裂转变为脆性断裂,这种断裂形式的转变,通常用一个特定的转变温度来表示,该转变温度在一定意义上表征了材料抵抗低温脆性断裂的能力。
这种随温度降低材料由韧性向脆性转变的现象称做低温脆性或冷脆,发生脆性转变的温度称为脆性转变温度。工程构件的工作温度必须在脆性转变温度以上,以防止发生脆性断裂。
并不是所有的金属材料都具有低温脆性。只有以体心立方金属为基的冷脆金属才具有明显的低温脆性,如中低强度钢和锌等。而面心立方金属,如铝等,没有明显的低温脆性。
⑧ 钢的化学成分对钢材性能的影响
钢中除铁、碳两种基本元素外,还含有其他的一些元素,它们对钢的性能和质量有一定的影响。
(1)碳。碳是决定钢材性能的主要元素。随着含碳量的增加,钢的强度、硬度提高,塑性、韧性降低。但当含碳量大于1.o%时,由于钢材变脆,抗拉强度反而下降。
(2)硅、锰。硅和锰是钢材中的有益元素。硅和锰是在炼钢时为了脱氧加入硅铁和锰铁而留在钢中的合金元素。
硅的含量在1%以内,可提高钢材的强度,对塑性和韧性没有明显影响。但含硅量超过1%时,钢材冷脆性增加,可焊性变差。
锰的含量为0.8%~1%时,可显著提高钢的强度和硬度,几乎不降低塑性及韧性。当其含量大于1%时,在提高强度的同时,塑性及韧性有所下降,可焊性变差。
(3)硫、磷。硫和磷是钢材中主要的有害元素,炼钢时由原料带入。
硫能够引起热脆性,热脆性严重降低了钢的热加工性和可焊性。硫的存在还使钢的冲击韧性、疲劳强度、可焊性及耐蚀性降低。
磷能使钢材的强度、硬度、耐蚀性提高,但显著降低钢材的塑性和韧性,特别是低温状态的冲击韧性下降更为明显,使钢材容易脆裂,这种现象称为冷脆性。冷脆性使钢材的冲击韧性以及焊接等性能都下降。
(4)氧、氮。氧和氮是钢材中的有害元素,它们是在炼钢过程中进入钢液的。这些元素的存在降低了钢材的强度、冷弯性能和焊接性能。氧还使钢材的热脆性增加,氮还使钢材的冷脆性及时效敏感性增加。
(5)铝、钛、钒、铌。铝、钛、钒、铌等元素是钢材中的有益元素,它们均是炼钢时的强脱氧剂,也是合金钢中常用的合金元素。适量地加入这些元素,可以改善钢材的组织,细化晶粒,显著提高钢材的强度和改善钢材的韧性。