导航:首页 > 钢材市场 > 为什么可以用热影响区最高硬度来评价钢材材料的焊接冷裂纹敏感性

为什么可以用热影响区最高硬度来评价钢材材料的焊接冷裂纹敏感性

发布时间:2023-09-04 10:37:51

㈠ 请问钢材焊接时热影响区产生冷裂纹与哪些因素有关

收藏推荐 钢材来焊接时源,热影响区经常发生冷裂纹。试验证明,这些冷裂纹的产生与下列因素有关: ①焊接热影响区的组织 焊接热影响区的组织取决于钢材的成份及焊缝的冷却速度。一般钢材的焊接热影响区冷裂纹大多在马氏体内发生,为此在钢的成份中必须降低那些能增强淬硬性的元素,并提高钢材的强度。应根据炭当量(Ceq)或焊接裂纹敏感系数(Pc劝来选择冷裂纹敏感性低的钢材。另外,如焊接区的冷却速度大,也容易产生马氏体组织,所以采用预热或其它方法降低冷却速度,对防止产生冷裂纹也是有利的。 ②焊接区的扩散氢 对焊接热影响区裂纹的产生具有很大影响的还有从焊缝金属中向热影响区扩散的氢。当焊缝金属处于熔化状态时吸收了大量的氢,这些氢随着温度的降低而向外逸出。扩散氢在焊接热影响区内助长了冷裂纹的发生和扩展。所以采用低氢型焊条有降低焊缝含氢量的作用。此外,焊前预热也有利于焊接区扩散氢的逸出,对防止裂纹有好的作用。 ⑧焊接应力 对焊接热影响区冷裂纹有影响的应力,主要有拘束应力和热应力。特别是拘束应力,在焊接设计及具体施工中更应注意。

㈡ 材料焊接技术论文

焊接是一种连接金属或热塑性塑料的制造或雕塑过程。这是我为大家整理的材料焊接技术论文,仅供参考!

材料焊接技术论文篇一

高强材料的焊接浅析

摘要:在现代工业中,高强材料越来越占有重要的地位,但其焊接时的焊接裂纹、脆化、软化等现象,给安全生产与产品的使用效率带来了隐患。为此,笔者根据自身学习与实践经历,就高强材料尤其是高强钢的焊接特性进行分析阐述。

关键词:高强材料;焊接;特性

一、高强材料概况

在当前的管道、容器中,高强材料越来越占有重要的地位。当中最重要的,是将钢里除碳意外添加一类或多类合金成分(合金成分的比例低于百分之五),用来加强钢的强度,将钢的强度提高到275MPa或更高,并产生更优的综合质量,此种钢被称为高强钢,它的基本优点为强度高、塑性与韧性也优于普通钢。根据钢的屈服强度的程度和热处理时的特性,高强钢总体上有两种。

热轧、正火钢,其屈服强度处于294Mpa~490MPa间,而利用状态是热轧、正火与控轧,在类别上是非热处理强化钢,该种钢的现实中使用的最为常见。

调质钢,其屈服强度处于490Mpa~980Mpa间,通常在调质状态中应用,在类别上是热处理强化钢。该种刚的特性是不烦强度高,而且塑性与韧性比较好,能够直接于调质时进行焊接。所以,这中调质钢在使用中越来越普及。

现在常使用的高强钢,钢板牌号包含以下几种:16MnR、15MnVR、13MnNiMoNbR、18MnMoNbR;锻件牌号包含以下几种:16Mn、15MnV、20MnMo、20MnMoNb。

二、高强钢的焊接特性

高强钢中碳含量通常不高于0.20%,合金成分的总量通常不高于5%。因为高强钢包含一些的合金成分,使它的焊接性和别的材料有一些不同,具体焊接特性有以下几点:

1、焊接时的焊接裂纹

(1).高强钢因为使用了让钢强度增加的碳、锰等元素成分,当焊接的时候往往产生淬硬,而产生的硬化部分往往很敏感,所以,当刚性过强与拘束应力较强的状态下,如果焊接方式有问题,就会造成冷裂纹。加上这中裂纹存在较长的延迟,容易造成较大的危害。

(2).再热裂纹为在焊作业完成后,慢慢去掉应力热的过程中,或较长时间在高温状态下于临近熔合线粗晶部位造成的沿晶开裂。通常认为,此类裂纹造成的原因,是因为焊接高温导致HAZ旁边的V、Nb、Cr、Mo等元素固溶在了奥氏体内,焊接完成后进行,但没有完全析出,而是在PWHT的时候呈弥散状态析出,所以强化了晶内,将应力在松弛的时候产生的蠕变变形汇聚在了晶界。

高强钢在焊接的时候,通常不会造成再热裂纹,例如16MnR、15MnVR之类。然而对Mn-Mo-Nb与Mn-Mo-V等类别的高强钢,因为Nb、V、Mo等成分比较敏感,是造成再热裂纹的常见因素,所以这些高强钢与焊接完成后实施热处理时,需要特别回避容易造成再热裂纹的温度范围,以免造成再热裂纹。

2、焊接部位的脆化与软化

(1).应变时效脆化。焊接部位于焊接前要进行各种冷处理(如钢板的剪切、管道筒罐的卷圆),材料会导致有所变形,要是变形的部位再收到200至450℃的热作用,可能造成应变时效,继而产生脆化,往往导致材料的塑性减弱,因此造成钢材的脆断。

PWHT能够减弱焊接时产生应变时效,将韧性一定程度上恢复。1998年制定的《钢制压力容器》中明确规定,筒状钢材的厚度要达到下列标准:碳素钢达到的的厚度不能低于圆筒内部直径的百分之三;别的钢的达到的厚度不能低于内部直径的百分之二点五。而且,那些冷成形与中温成形中制作的受压产品,要在成形之后实施热处理。

(2).焊缝与热影响区产生的脆化。对材料进行焊接时,加热与冷却往往不会十分均匀,便会产生不均匀的结构。焊缝与热影响区具有一定的脆性,这是是焊接接头里最薄弱的地方。焊接线的能量强度会对高强钢WM与HAZ性能产生较大影响,高强钢容易淬硬,线能量如果不高,HAZ会产生马氏体造成裂纹;线能量如果过高,WM与HAZ产生粗糙的晶粒,会造成焊接部位的脆化。线能量如果过高,调质钢而造成的HAZ脆化现象尤其明显。因而焊接作业时,要把线能量控制于合适的度量。

(3).焊接部位的热影响区产生的软化。因为焊接时的热作用,会造成部分地区强度降低,形成了一定的软化带。HAZ区的结构软化会因为焊接线热度的提升与预热温度的提升而恶化,不过通常的软化区的性能还是能够达到规定标准值的最低标准,因而这些钢材地热影响部位产生的软化现象,如果做到工艺合适,就不会降低焊接部位的正常使用。

三、当代新式高强材料的焊接特性

1、高强管线钢

高强管线钢指X70以上的钢级,至尽为止,X80是已建管线钢中使用的强度最高的管线钢。加拿大Ipsco钢铁公司在1998年年报中明确指出,该公司已成功进行了X90和X100SSAW钢管试生产,最终目标是生产各种规格的X100钢管。日本NKK、住友金属、新日铁、川崎制铁及欧洲钢管公司也相继研制成功X90和X100UOE钢管,正在研制X120钢管。

为保障管线的安全可靠性,在提高强度的同时,必须相应提高韧性。特别是高压输气用钢管,必须有很高的CVN。超贝氏体和超马氏体被誉为21世纪的管线钢,其钢级为X80~X100(贝氏体)、X100~X120(马氏体)。在成分设计上,大体上都是(超)的Mn-Nb-Ti系或Mn-Nb-V(Ti)系,有的还加入Mo、Ni、Cu等元素,因此,热影响区的韧性不会比较低强度的管线钢差,冷裂纹敏感性不大。对于强度高于600MPa的钢,焊接时要特别关注WM冷裂纹问题,尤其是现场对接环焊缝必须采用超低氢焊接材料。

2、超细晶粒钢

上世纪90年代,世界主要产钢国相继开展了新一代钢铁材料的研究,其中,尤以日本的“超级钢“计划、中国的“新一代钢铁材料重大基础研究”和韩国的“21世纪高性能结构钢”引起世界钢铁界的瞩目和热情参与。

在新一代钢铁材料的研究中,最引人注目的是超细晶粒的研究,通过超细晶粒(最小1mm)实现强度翻番的目标。超细晶粒钢焊接的最大问题就是HAZ的晶粒长大倾向,为解决这一问题,须采用激光焊、超窄间隙MAG焊、脉冲MAG焊等低热输入焊接方法。

参考文献

[1]王建利.高强钢的焊接工艺评定[J].云南水力发电,2007,(02).

[2]李明.高强钢的焊接[J].现代焊接,2005,(03).

[3]栗卓新,刘秀龙,李虹,李国栋.高强钢焊材及焊接性的国内外研究进展[J].新技术新工艺,2007,(05).

材料焊接技术论文篇二

试论焊接技术

摘 要:焊接是一种连接金属或热塑性塑料的制造或雕塑过程。焊接过程中,工件和焊料熔化形成熔融区域,熔池冷却凝固后便形成材料之间的连接。这一过程中,通常还需要施加压力。焊接的能量来源有很多种,包括气体焰、电弧、激光、电子束、摩擦和超声波等。今天,随着焊接机器人在工业应用中的广泛应用,研究人员仍在深入研究焊接的本质,继续开发新的焊接方法,以进一步提高焊接质量。

关键词:焊接;金属;能量;技术

1、焊接技术概论

1.1焊接过程的物理本质

焊接是两种或两种以上同种或异种材料通过原子或分子之间的结合和扩散连接成一体的工艺过程.促使原子和分子之间产生结合和扩散的方法是加热或加压,或同时加热又加压。

1.2焊接的分类

金属的焊接,按其工艺过程的特点分有熔焊,压焊和钎焊三大类。

1.2.1熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后形成连续焊缝而将两工件连接成为一体。在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。为了提高焊接质量,人们研究出了各种保护方法。例如,气体保护电弧焊就是用氩、二氧化碳等气体隔绝大气,以保护焊接时的电弧和熔池率;又如钢材焊接时,在焊条药皮中加入对氧亲和力大的钛铁粉进行脱氧,就可以保护焊条中有益元素锰、硅等免于氧化而进入熔池,冷却后获得优质焊缝。

1.2.2压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。同时由于加热温度比熔焊低、加热时间短,因而热影响区小。许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。

1.2.3钎焊是使用比工件熔点低的金属材料作钎料,将工件和钎料加热到高于钎料熔点、低于工件熔点的温度,利用液态钎料润湿工件,填充接口间隙并与工件实现原子间的相互扩散,从而实现焊接的方法。

1.2.4焊接时形成的连接两个被连接体的接缝称为焊缝。焊缝的两侧在焊接时会受到焊接热作用,而发生组织和性能变化,这一区域被称为热影响区。焊接时因工件材料焊接材料、焊接电流等不同,焊后在焊缝和热影响区可能产生过热、脆化、淬硬或软化现象,也使焊件性能下降,恶化焊接性。这就需要调整焊接条件,焊前对焊件接口处预热、焊时保温和焊后热处理可以改善焊件的焊接质量。另外,焊接是一个局部的迅速加热和冷却过程,焊接区由于受到四周工件本体的拘束而不能自由膨胀和收缩,冷却后在焊件中便产生焊接应力和变形。重要产品焊后都需要消除焊接应力,矫正焊接变形。

1.2.5现代焊接技术已能焊出无内外缺陷的、机械性能等于甚至高于被连接体的焊缝。被焊接体在空间的相互位置称为焊接接头,接头处的强度除受焊缝质量影响外,还与其几何形状、尺寸、受力情况和工作条件等有关。接头的基本形式有对接、搭接、丁字接(正交接)和角接等。对接接头焊缝的横截面形状,决定于被焊接体在焊接前的厚度和两接边的坡口形式。焊接较厚的钢板时,为了焊透而在接边处开出各种形状的坡口,以便较容易地送入焊条或焊丝。坡口形式有单面施焊的坡口和两面施焊的坡口。选择坡口形式时,除保证焊透外还应考虑施焊方便,填充金属量少,焊接变形小和坡口加工费用低等因素。厚度不同的两块钢板对接时,为避免截面急剧变化引起严重的应力集中,常把较厚的板边逐渐削薄,达到两接边处等厚。对接接头的静强度和疲劳强度比其他接头高。在交变、冲击载荷下或在低温高压容器中工作的联接,常优先采用对接接头的焊接。

搭接接头的焊前准备工作简单,装配方便,焊接变形和残余应力较小,因而在工地安装接头和不重要的结构上时常采用。一般来说,搭接接头不适于在交变载荷、腐蚀介质、高温或低温等条件下工作。采用丁字接头和角接头通常是由于结构上的需要。丁字接头上未焊透的角焊缝工作特点与搭接接头的角焊缝相似。当焊缝与外力方向垂直时便成为正面角焊缝,这时焊缝表面形状会引起不同程度的应力集中;焊透的角焊缝受力情况与对接接头相似。角接头承载能力低,一般不单独使用,只有在焊透时,或在内外均有角焊缝时才有所改善,多用于封闭形结构的拐角处。焊接产品比铆接件、铸件和锻件重量轻,对于交通运输工具来说可以减轻自重,节约能量。焊接的密封性好,适于制造各类容器。发展联合加工工艺,使焊接与锻造、铸造相结合,可以制成大型、经济合理的铸焊结构和锻焊结构,经济效益很高。采用焊接工艺能有效利用材料,焊接结构可以在不同部位采用不同性能的材料,充分发挥各种材料的特长,达到经济、优质。焊接已成为现代工业中一种不可缺少,而且日益重要的加工工艺方法。

1.2.6未来的焊接工艺,一方面要研制新的焊接方法、焊接设备和焊接材料,以进一步提高焊接质量和安全可靠性,如改进现有电弧、等离子弧、电子束、激光等焊接能源;运用电子技术和控制技术,改善电弧的工艺性能,研制可靠轻巧的电弧跟踪方法。另一方面要提高焊接机械化和自动化水平,如焊机实现程序控制、数字控制;研制从准备工序、焊接到质量监控全部过程自动化的专用焊机;在自动焊接生产线上,推广、扩大数控的焊接机械手和焊接机器人,可以提高焊接生产水平,改善焊接卫生安全条件。

2、焊接-工业艺术

焊接的出现迎合了金属艺术发展对新工艺手段的需要。而在另一方面,金属在焊接热量作用下所产生的独特美妙的变化也满足了金属艺术对新的艺术表现语言的需求。在今天的金属艺术创作中,焊接可以而且正在被作为一种独特的艺术表现语言而着力加以表现。本文对这一技术的出现与运用进行了分析。

2.1艺术创造与工艺方法永远是密不可分的。作为一种工业技术,焊接的出现迎合了金属艺术发展对新的工艺手段的需要。而在另一方面,金属在焊接热量作用下所产生的独特美妙的变化也满足了金属艺术对新的艺术表现语言的需求。在今天的金属艺术创作中,焊接可以而且正在被作为一种独特的艺术表现语言而着力加以表现。金属焊接艺术可以作为一种相对独立的艺术形式以分支的方式从传统的金属艺术中分离出来,这是因为焊接具有艺术性。

2.2焊接可以产生丰富的艺术创作的表现语言。

焊接通常是在高温下进行的,而金属在高温下会产生许多美妙丰富的变化。金属母材会发生颜色变化和热变形(即焊接热影响区) ;焊丝熔化后会形成一些漂亮的肌理;而焊接缺陷在焊接艺术中更是经常被应用。焊接缺陷是指焊接过程中,在焊接接头产生的不符合设计或工艺要求的缺陷。其表现形式主要有焊接裂纹、气孔、咬边、未焊透、未熔合、夹渣、焊瘤、塌陷、凹坑、烧穿、夹杂等。这是个十分有趣的现象 :焊接的艺术性通常体现在一些工业焊接的失败操作之中,或者说蕴藏于一些工业焊接极力避免的焊接缺陷之中。其次,焊接艺术语言是独特的。选用不同的金属材料,使用不同的焊接工艺,焊接的艺术性可以在不同的金属艺术形式中发挥得淋漓尽致。

在焊接雕塑作品中,焊缝和割痕不是作为一种技术加工的痕迹被动地存在,而是以一种精彩的、不可或缺的表现语言着力地加以体现的。一件焊接雕塑,粗的焊缝裸露在雕塑表面,各种不规则的切割痕迹也变成了艺术家优美的艺术语言在很多情况下,由于焊接雕塑所追求的粗糙质朴的风格,金属的锈蚀、瑕疵也大多根据作品的需要特意保留,因此,在焊接雕塑中常常可以感觉到一种非雕琢的、原始的美。雕塑下部的钢板拼接处的焊缝很粗大,从焊接工艺的牢固性来看,这显然不仅仅是出于对雕塑结实程度的考虑,在这件雕塑中,下部几条扭曲的焊缝已经作为雕塑整体审美的一个重要因素而成为其不可缺少的一部分。从雕塑整体来看,不论是上半部分的文字造型,还是下半部分的肌理处理,到处有扭曲的焊接痕迹的出现,整个作品达到了整体视觉语言的统一。 手工等离子切割的方法,利用切割时电流的热量,使切割边缘产生热影响区,这样就给亮白色的不锈钢“染”上了一圈略带渐变的色彩。同时,通过对焊接规范的调节,割枪喷出的强烈气流会在切割钢板熔化的瞬间在切割边缘“吹”起一圈随机形成的肌理,在切割完成金属冷却后,固化为一道美丽的割痕,与中间平坦光亮的不锈钢板材形成了质感的对比。这种随机效果的形成过程带有一定的偶然性,但又是在一定的焊接规范下必然产生的现象。从尺寸的角度考虑,尺寸较大的焊接艺术壁饰可采用半自动CO2气体保护焊,较小的可采用手工钨极氩弧焊。

如果把一幅壁饰作品看成一幅画的话,画面中的点、线、面、黑、白、灰甚至颜色的处理都可以通过焊接的方法来实现。各种型号、各种材质的金属丝,应用不同的焊接工艺会在画面上以不同的形式出现。不同金属的颜色不同,不锈钢的亮银色、铝材的亚银色、碳钢的乌亮色,钛钢、青铜、紫铜、黄铜而且就钢材来说,不同的钢材在高温受热时会出现不同的颜色变化,即焊接热影响区不同。另外,切割也是焊接艺术壁饰创作的方法之一,既可以与焊接结合使用,也可以单独使用,这完全取决于创作者的创作意图和对工艺与效果的掌握程度。以上所述的这些方法综合起来,变化的丰富可想而知。

3、焊接作业中发生火灾、爆炸事故的原因

3.1焊接切割作业时,尤其是气体切割时,由于使用压缩空气或氧气流的喷射,使火星、熔珠和铁渣四处飞溅(较大的熔珠和铁渣能飞溅到距操作点5m以外的地方),当作业环境中存在易燃、易爆物品或气体时,就可能会发生火灾和爆炸事故。

3.2在高空焊接切割作业时,对火星所及的范围内的易燃易爆物品未清理干净,作业人员在工作过程中乱扔焊条头,作业结束后未认真检查是否留有火种。

3.3气焊、气割的工作过程中未按规定的要求放置乙炔发生器,工作前未按要求检查焊(割)炬、橡胶管路和乙炔发生器的安全装置。

4、焊接作业中发生火灾、爆炸事故的防范措施

4.1焊接切割作业时,将作业环境lOm范围内所有易燃易爆物品清理干净,应注意作业环境的地沟、下水道内有无可燃液体和可燃气体,以及是否有可能泄漏到地沟和下水道内可燃易爆物质,以免由于焊渣、金属火星引起灾害事故。

4.2高空焊接切割时,禁止乱扔焊条头,对焊接切割作业下方应进行隔离,作业完毕应做到认真细致的检查,确认无火灾隐患后方可离开现场。

4.3应使用符合国家有关标准、规程要求的气瓶,在气瓶的贮存、运输、使用等环节应严格遵守安全操作规程。

4.4对输送可燃气体和助燃气体的管道应按规定安装、使用和管理,对操作人员和检查人员应进行专门的安全技术培训。

4.5焊补燃料容器和管道时,应结合实际情况确定焊补方法。实施置换法时,置换应彻底,工作中应严格控制可燃物质的含影实施带压不置换法时,应按要求保持一定的电压。工作中应严格控制其含氧量。要加强检测,注意监护,要有安全组织措施。

作为一种工业技术,焊接的出现迎合了金属艺术发展对新工艺手段的需要。而在另一方面,金属在焊接热量作用下所产生的独特美妙的变化也满足了金属艺术对新的艺术表现语言的需求。在今天的金属艺术创作中,焊接可以而且正在被作为一种独特的艺术表现语言而着力加以表现。

上述种种焊接缺陷的表现形式以及焊接热影响区,是通过一定规范下的焊接操作形成的,也只有通过焊接的方式才会产生这些艺术语言。焊接艺术作品的表面效果是其它金属加工工艺无法或者很难实现的,因而说焊接艺术具有独特的艺术性。

㈢ 冷裂纹产生的原因

问题一:冷裂纹的产生原因 金属材料焊接产生裂纹的原因,谈谈我自己的看法 1、就是焊缝组织冷却过程中收缩产生的应力超过了熔池金属的抗拉强度 2、焊缝表面结晶过程中,由于析出低熔点共晶物,脆性较大,焊缝收缩过程产生裂纹 预防措施: 1、坡口制备,必须严格按照WPS要求,有时候为了弥补工人的失误,把坡口间隙调整到很大,显然,这样的坡口待焊接完一层后,由于面积过大,热量散失很快,凝固速度很快,容易产生裂纹 2、预热,严格按照WPS要求,温度比较低及厚板环境下,热量散失也很快,必要的预热是需要的 3、焊材匹配,尽量选用同母材强度匹配的焊接材料; 4、焊材烘烤,严格按照公司焊接材料管理制度要求进行烘烤,避免潮湿状态下的H致裂纹 5、打磨去除表面的裂纹,不得试图用熔合的方式去除裂纹 6、焊接到一定厚度时应使用锤击的方式部分消除应力,防止最终应力过大导致裂纹产生 个人总结,不全面。。。个人以为够用了。。。

问题二:产生冷裂纹的因素有哪些 冷裂纹产生的原因是:
(1)焊缝中的氢在结晶过程中要向热影响区扩散、聚集。
(2)如果被焊材料的淬透性较大,则焊后冷却下来时,在热影响区形成马氏体组织,其性脆而硬。
(3)焊接时的残余应力。
这三个因素(氢、淬硬组织和应力)的综合作用,就会导致冷裂纹的产生。氢在金属里的扩散速度有快有慢,因此冷裂纹产生的时间也不同。有的在焊后冷却过程中产生,有的甚至放置一段时间后才产生,故又称为延迟裂纹。
防止冷裂纹的措施有:
(l)焊前预热和焊后缓冷。
(2)采用减少氢的工艺措施。
(3)合理选用焊接材料。
(4)采用适当的工艺参数。
(5)选用合理的装焊顺序。
(6)进行焊后热处理。

问题三:冷裂纹产生的原因是什么 产生原因
① 焊接接头存在淬硬组织,性能脆化。
② 扩散氢含量较高,使接头性能脆化,并聚集在焊接缺陷处形成大量氢分子,造成非常大的局部压力。(氢是诱发延迟裂纹的最活跃因素,故有人将延迟裂纹又称氢致裂纹)
③ 存在较大的焊接拉应力

问题四:简述焊接热裂纹和焊接冷裂纹的形成机理 并比较它们各自的特点。 1)热裂纹。在焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区产生的焊接裂纹就是热裂纹。
?形成:由于被焊接的材料大多数都是合金,而合金凝固自开始到最终结束,是在一定的温度区间内进行的,这是热裂纹产生的基本原因。焊缝中的许多杂质的凝固温度都低于焊缝金属的凝固温度,这样首先凝固的焊缝金属把低熔点的杂质推挤到凝固结晶的晶粒边界,形成了一层液体薄膜,又因为焊接时熔池的冷却速度很大,焊缝金属在冷却的过程中发生收缩,使焊缝金属内部产生拉应力,拉应力把凝固的焊缝金属沿晶粒边界拉开,又没有足够的液体金属补充时,就会形成微小的裂纹,随着温度的继续下降,拉应力增大,裂纹不断扩大。当焊缝金属中含有较多的低熔点杂质时,焊缝金属极易产生裂纹。母材和焊接材料中含有的有害杂质,特别是硫元素,它是引起钢材焊缝金属中发生凝固裂纹的最主要元素。另外,钢材中含碳量较高时,有利于硫在晶界处富集,因而也是促进形成凝固裂纹的原因,所以采用含碳量低的焊接材料有利于防止凝固裂纹的产生。
?热裂纹的特征:断口呈蓝黑色,即金属在高温被氧化的颜色,有时在热裂纹里流入熔渣的迹象。再者,弧坑裂纹多为热裂纹。
2)冷裂纹。冷裂纹指焊接接头冷却到较低温度时产生的焊接裂纹。
?冷裂纹产生的原因:钢材的淬火倾向,残余应力,焊缝金属和热影响区的扩散氢含量。其中氢的作用是形成冷裂纹的重要因素。当焊缝和热影响区的含量较高时,焊缝中的氢在结晶过程中向热影响区扩散,当这些氢不能逸出时,就聚集在离熔合线不远的热影响区中;如果被焊材料的淬火倾向较大,焊后冷却下来,在热影响区可能形成马氏体组织,该种组织脆而硬;在加上焊后的焊接残余应力,在上述几种因素的作用下,导致了冷裂纹的产生。
?冷裂纹与热裂纹的主要区别就是:冷裂纹在较低的温度下形成,一般在200-300℃以下形成;冷裂纹不是在焊接过程中产生的,而是在焊后延续一定的时间后才产生,如果钢的焊接接头冷却到湿温后并在一定的时间(几小时、几天、甚至十几天以后)才出现的冷裂纹称为延迟裂纹;冷裂纹多在焊接热影响区内产生,如沿应力集中的焊缝根部形成的冷裂纹称为焊根裂纹。沿应力集中的焊趾处形成的冷裂纹称为焊趾裂纹。在靠近堆焊焊道的热影响区内所形成的裂纹称为焊道下裂纹。冷裂纹有时也在焊缝金属内发生。一般焊缝金属的横向裂纹多为冷裂纹。冷裂纹与热裂纹相比,冷裂纹的断口无氧化色。

问题五:冷裂纹主要发生在哪些材料上 楼主:
您好!关于冷裂纹的形成主要影响因素有3个,即淬硬组织、扩散氢,及拘束应力。
所以,鉴于以上3种影响因素,则可分析对于淬硬组织而言,即和材料的碳当量CE有关,具体影响公式按ASME-IX2010为CE=C+Mn/6+(Cr+Mo+V)/5+Ni+Cu/15(不同的教材上有少许区别,最早进行这项研究的是在日本),即淬硬倾向和CE有关,CE越大,淬硬倾向越厉害,从公式知道C含量是直接加上去的,所以对于如低碳(碳含量0.08以下)及超低碳(0.03以下)不锈钢而言,其含碳量很小,基本不考虑冷裂纹(主要涉及结晶裂纹即热裂纹),对于高碳型不锈钢如347H\321H之类,其实也不用考虑冷裂纹,但工程中存在焊接后出现裂纹的现象,有些教授学者提出冷裂纹的说法(个人不同意这种观点),具体见公式,就不多展开,有兴趣可以探讨,您也可以参考《材料连接原理》(大学焊接专业教材)或《焊接手册-材料篇》;
那么第二个问题即为扩散氢,个别课本上称冷裂纹为氢致开裂(正常俗称延迟裂纹),在拘束应力作用下,尤其是扩散氢含量较多,在发生相变后,容易出现相变后的组织氢的溶解度降低(相变不仅由温度引起,和组织应力亦有关系);
最后一个即是拘束应力,这主要是对厚壁材料而言,壁厚越大,后面的熔敷金属收缩越不彻底,即应力无法得到释放,从而导致较高的残余应力残留。
以上恭三者的作用即会容易导致冷裂纹的出现,且三者缺一不可哦!
所以您的问题答案笼统地说,即冷裂纹容易出现在碳当量较高、壁厚较厚、熔敷金属氢含量较高的焊接构件中哦!
所以在工程中对于该类材料通常如压力容器用低合金钢、低合金高强钢等常通过其CE来计算预热温度,并进行焊接紧急后热及焊后热处理,在焊接材料上选用低氢或超低氢焊材,通过正确的坡口设计来降低接头拘束等措施来避免冷裂纹出现,并在热处理48小时后检测焊缝情况作为最终的验收。
未知以上内容是否说的清楚,还望诸位批评指正!

问题六:焊接时冷裂纹和热裂纹的产生 1、冷裂纹
冷裂纹的特征
多出现在焊道与母材熔合线附近的热影响区中,多为穿晶裂纹。
冷裂纹无氧化色彩。
冷裂纹发生于碳钢或合金钢,高的含碳量和合金含量。
冷裂纹具有延迟性质,主要是延迟裂纹。
冷裂纹产生原因
焊接接头(焊缝和热影响区及熔合区)的淬火倾向严重,产生淬火组织,导致接头性能脆化。
焊接接头含氢量较高,并聚集在焊接缺陷处形成大量氢分子,造成非常大的局部压力,使接头脆化;磷含量过高同样产生冷裂纹。
存在较大的拉应力。因氢的扩散需要时间,所以冷裂纹在焊后需延迟一段时间才出现。由于是氢所诱发的,也叫氢致裂纹。
防止冷裂纹的措施
选用碱性焊条或焊剂,减少焊缝金属中氢的含量,提高焊缝金属塑性。
焊条焊剂要烘干,焊缝坡口及附近母材要去油、水、除锈,减少氢的来源。
工件焊前预热,焊后缓冷(大部分材料的温度可查表),可降低焊后冷却速度,避免产生淬硬组织,并可减少焊接残余应力。
采取减小焊接应力的工艺措施,如对称焊,小线能量的多层多道焊等,焊后进行清除应力的退火处理。
焊后立即进行去氢(后热)处理,加热到250℃,保温2~6h,使焊缝金属中的散氢逸出金属表面。
2、热裂纹(又称结晶裂纹)
热裂纹的特征
热裂纹可发生在焊缝区或热影响区,沿焊缝长度方向分布。
热裂纹的微观特征是沿晶界开裂,所以又称晶间裂纹。因热裂纹在高温下形成,
有氧化色彩。
焊后立即可见。
热裂纹产生原因。
焊缝金属的晶界上存在低熔点共晶体(含硫、磷、铜等杂质)。
接头中存在拉应力。
防止措施
选用适宜的焊接材料,严格控制有害杂质碳、硫、磷的含量。Fe和FeS易形成低熔点共晶,其熔点为988℃,很容易产生热裂纹。
严格控制焊缝截面形状,避免突高,扁平圆弧过渡。
缩小结晶温度范围,改善焊缝组织,细化焊缝晶粒,提高塑性减少偏析。
确定合理的焊接工艺参数,减缓焊缝的冷却速度,以减小焊接应力。如采用小线能量,焊前预热,合理的焊缝布置等。

问题七:、焊接冷裂纹产生的原因是什么? 组织变化,应先加温

问题八:什么是铸造冷裂纹 冷裂纹是铸件凝固后冷却到弹性状态时,因局部铸造应力大于合金极限强度而引起的开裂。冷裂纹总是发生在冷却过程中承受拉应力的部位,特别是拉应力集中的部位。冷裂纹与热裂纹不同,冷裂纹往往穿晶扩展到整个截面,外形呈宽度均匀细长的直线或折线状,冷裂纹的断口表面子净有金属光泽或呈轻度氧化色,裂纹走向平滑,而非沿晶界发生。这与热裂纹有显著的不同。冷裂纹检验用肉眼可见,可根据其宏观形貌及穿晶扩展的微观特征,与热裂纹区别。

问题九:焊接接头中出现冷裂纹主要与哪些因素有关 收藏推荐 钢材焊接时,热影响区经常发生冷裂纹。试验证明,这些冷裂纹的产生与下列因素有关: ①焊接热影响区的组织 焊接热影响区的组织取决于钢材的成份及焊缝的冷却速度。一般钢材的焊接热影响区冷裂纹大多在马氏体内发生,为此在钢的成份中必须降低那些能增强淬硬性的元素,并提高钢材的强度。应根据炭当量(Ceq)或焊接裂纹敏感系数(Pc劝来选择冷裂纹敏感性低的钢材。另外,如焊接区的冷却速度大,也容易产生马氏体组织,所以采用预热或其它方法降低冷却速度,对防止产生冷裂纹也是有利的。 ②焊接区的扩散氢 对焊接热影响区裂纹的产生具有很大影响的还有从焊缝金属中向热影响区扩散的氢。当焊缝金属处于熔化状态时吸收了大量的氢,这些氢随着温度的降低而向外逸出。扩散氢在焊接热影响区内助长了冷裂纹的发生和扩展。所以采用低氢型焊条有降低焊缝含氢量的作用。此外,焊前预热也有利于焊接区扩散氢的逸出,对防止裂纹有好的作用。 ⑧焊接应力 对焊接热影响区冷裂纹有影响的应力,主要有拘束应力和热应力。特别是拘束应力,在焊接设计及具体施工中更应注意。

㈣ 2.中碳调质钢焊接冷裂敏感性大的原因是什么

焊缝中的热裂纹、冷裂纹、过热区的脆化。
1、焊缝中的热裂纹。中碳调质钢由于含碳量及合金元素含量较高,其结晶温度区间较大,有严重的偏析,热裂纹倾向很大。
2、冷裂高差纹。中碳调质钢冷裂敏感性大,马氏体开始转变温度较低,在低温下形成的马氏体,难以产生“自回火”效应,使得马氏体的硬度和脆性更大,冷裂纹倾向较为严重。
3、过热区的脆化。中碳调质钢具有相当大的淬硬性,在焊接热影响区的过热区内很容易产戚巧皮生硬脆的高碳马氏体。冷却速度越大,生成高碳马氏体就越多,脆化也宽纳就越严重。

㈤ Q460E低合金高强钢焊接时的注意事项有哪些

低合金高强钢的焊接性主要包括两个方面,其一是裂纹敏感性,其二是焊接
热影响区的力学性能。
众所周知,扩散氢、脆性组织和残余应力是冷裂纹产生的三要素,碳当量公式
(如
IIW

CEN
公式)热影响区最大硬度等都被用来评价钢材的冷裂敏感性。
(1)冷裂纹问题
对于现代低合金高强度钢,
由于热机械控制工艺技术和微合金化技术的广泛
应用,碳含量和碳当量都大幅度降低,因此,其冷裂敏感性不明显,除非在极端
情况下(很大的拘束度或扩散氢含量很高)
,一般不会遭遇冷裂纹。
值得注意的是焊缝金属冷裂纹问题。
冷裂纹倾向低合金高强钢随着强度等级的增高,焊接接头冷裂纹倾向增大。冷裂纹又叫氢致裂纹或延迟裂纹,是指焊接接头冷却到较低温度(Ms
温度以下)时产生的焊接
裂纹冷裂纹一般产生在热影响区,有时也产生在焊缝金属内。产生冷裂纹的三个
主要因素是:裂缝金属内残留的扩散氢、热影响区或焊缝金属硬组织、焊接残余
应力。
焊接低合金高强度钢时,
氢的主要来源是焊条药皮中的水分和破口表面的水
分、油污等杂质。这些物质在电弧高温作用下分解出氢,溶解在熔池金属内,熔
池冷却凝时氢来不及逸出,残留在焊缝内。另外,焊接低合金高强度钢的一个重
要特点是热影响区有较大的淬硬倾向,随强度等级的提高、含碳元素或合金元素
含量增多,其淬硬性也增大。当焊接浮大焊件或冷却速度过快时,热影响区或焊
缝金属更容易产生淬硬组织。
焊接时由于不均匀的加热和冷却以及构件本身的拘
束作用,在焊缝内仍然会产生很大的残余应力。所以,低合金高强度钢焊接时有
较大的冷裂倾向。
为防止冷裂纹的产生,焊前应严标按照说明书的规定烘干焊条,将坡口清理
干净,并采取焊前预热、焊后保温缓冷及热处理等措施。
母材强度的提高和焊接性的改善,
促使冷裂纹发生的位置从热影响区转移到
焊缝。基于焊后随时间变化氢对局部临界开裂应力的影响,国际焊接联合会提出
了判别高强钢冷裂纹位置的基本方法,焊后焊缝中的氢含量随时间单调减少,而热影响区的氢含量先从母材基础值升高到峰值然后下降,整个过程只有几分钟,
恰好与残余应力发生的过程同步,通过计算残余应力值-时间的变化、以及热影
响区和焊缝受实时扩散氢含量影响的临界开裂应力,
即可预测冷裂纹发生的位置。
高强度焊缝金属对裂纹敏感性大,当然有利于焊缝冷裂纹

㈥ 焊接工艺条件对热影响区最高硬度有什么影响

一般来抄说,焊接接头包括热影响区,它的硬度值相对于母材硬度值越高,证明焊接接头的韧性就越差,综合机械性能也就越差,容易出现脆化,断裂等危害!合理的焊接工艺条件就是减少这种硬度值的差异,保证焊接接头的使用性能!

㈦ 焊接热影响区最大硬度的判断钢材焊接性好坏的一个指标。这句话对吗

这句有一定的道理,若钢材含碳量大的,就会硬度大,这样就容易造成裂纹等焊接缺陷,可焊性差。

阅读全文

与为什么可以用热影响区最高硬度来评价钢材材料的焊接冷裂纹敏感性相关的资料

热点内容
钢板桩怎么算价 浏览:902
怎么清理白钢锅内污垢 浏览:19
钢铁是怎样炼成的什么内容 浏览:407
为什么说碳钢中硫和磷是有害元素 浏览:908
修边模具角度最大是多少 浏览:24
普洱钢化防火玻璃厂 浏览:176
为什么笔记本被称为模具 浏览:849
激光焊接如何焊滑 浏览:368
为什么不锈钢不能煮饭 浏览:128
怎么样才能把焊接口焊好 浏览:543
t形钢板各代表什么意思 浏览:983
魔兽世界钢铁战蝎怎么单杀 浏览:226
玉石模具椅子的模具多少钱一个 浏览:761
锌铁阳台护栏怎么安装 浏览:356
钢板采用什么油漆 浏览:982
什么样的钢材做冲子好 浏览:495
钢铁发红是多少度温度 浏览:700
不锈钢烤漆网和金刚网哪个好 浏览:521
模具用什么运输安全 浏览:564
玻璃钢化粪坑的制作视频 浏览:686