『壹』 建筑钢材的力学性能主要有哪些
钢材的力学性能:有明显流幅的钢筋,塑形好、延伸率大。
技术指标:屈服强度、延伸率、强屈比、冷弯性能。
力学性能是最重要的使用性能,包括抗拉性能、冲击韧性、耐疲劳性等。工艺性能包括冷弯性能和可焊性。
(1)抗拉性能:抗拉性能钢材最重要的力学性能。
屈服强度是结构设计中钢材强度的取值依据。
抗拉强度与屈服强度之比(强屈比)σb/σs,是评价钢材使用可靠性的一个参数。
对于有抗震要求的结构用钢筋,实测抗拉强度与实测屈服强度之比不小于1.25;
实测屈服响度与理论屈服强度之比不大于1.3;
强屈比愈大,钢材受力超过屈服点工作时的可靠性越大,安全性越高;但强屈比太大,钢材强度利用率偏低,浪费材料。
钢材受力破坏前可以经受永久变形的性能,称为塑性,它是钢材的一个重要指标。钢材的塑性指标通常用伸长率表示。伸长率随钢筋强度的增加而降低。
冷弯也是考核钢筋塑性的基本指标。
(2)冲击韧性,是指钢材抵抗冲击荷载的能力,在负温下使用的结构,应当选用脆性临界温度较使用温度为低的钢材。
(3)耐疲劳性:钢材在应力远低于其屈服强度的情况下突然发生脆断破裂的现象,称为疲劳破坏。危害极大,钢材的疲劳极限与其抗拉强度有关,一般抗拉强度高,其疲劳极限也较高。
来源:中国钢材网
『贰』 从钢材的力学性能和工艺性能要求,分析如何评定建筑钢材的质量.
建筑钢材的力学性能有:抗拉性能、冲击韧性、耐疲劳性
建筑钢材的工艺性能有:冷弯性能、可焊性能
1. 抗拉性能
低碳钢拉伸时的应力-应变图 硬钢应力-应变图
抗拉性能是建筑钢材最重要的力学性能。钢材受拉时,在产生应力的同时,相应地产生应变。应力和应变的关系反映出钢材的主要力学特征。从低碳钢(软钢)的应力-应变关系中可看出,低碳钢从受拉到拉断,经历了四个阶段:弹性阶段(OA)、屈服阶段(AB)、强化阶段(BC)和颈缩阶段(CD)。
⑴ 弹性阶段
在图中OA段,应力较低,应力与应变成正比例关系,卸去外力,试件恢复原状,无残余形变,这一阶段称为弹性阶段。弹性阶段的最高点(A点)所对应的应力称为弹性极限,用σp表示,在弹性阶段,应力和应变的比值为常数称为弹性模量,用E表示,即E=σ/ε。
⑵ 屈服阶段
当应力超过弹性极限后,应变的增长比应力快,此时,除产生弹性变形外,还产生塑性变形。当应力达到B上点时,即使应力不再增加,塑性变形仍明显增长,钢材出现了“屈服”现象,这一阶段称为屈服阶段。在屈服阶段中,应力会有波动,出现上屈服点(B上)和下屈服点(B下)。由于下屈服点比较比较稳定且容易测定,因此,采用下屈服点对应的应力作为钢材的屈服极限(σS)或屈服强度。
钢材受力达到屈服强度后,变形迅速增长,尽管尚未断裂,已不能满足使用要求,故结构设计中以屈服强度作为容许应力取值的依据。
⑶ 强化阶段
在钢材屈服到一定程度后,由于内部晶格扭曲、晶粒破碎等原因,阻止了塑性变形的进一步发展,钢材抵抗外力的能力重新提高,在应力-应变图上,曲线从B点开始上升直至最高点C,这一过程称为强化阶段;
对应于最高点C的应力称为抗拉强度(σb)。它是钢材所承受的最大拉应力。常用低碳钢的抗拉强度为375~500MPa。
条件屈服点: 某些合金钢或含碳量高的钢材(如预应力混凝土用钢筋和钢丝)具有硬钢的特点,其抗拉强度高,无明显屈服阶段,伸长率小。
故采用产生残余变形为0.2%原标距长度时的应力作为屈服强度,称为条件屈服点,用δ0.2表示。
强屈比:抗抗拉强度与屈服强度之比(强屈比)σb/σS,是评价钢材使用可靠性的一个参数。强屈比愈大,钢材受力超过屈服点工作时的可靠性越大,安全性越高,但是,强屈比太大,钢材强度的利用率偏低,浪费材料。钢材的强屈比一般不低于1.2,用于抗震结构的普通钢筋实测的强屈比应不低于1.25。
⑷ 颈缩阶段
在钢材达到C点后,试件薄弱处的断面将显著减小,塑性变形急剧增加,产生“颈缩”现象而断裂(图8-3)。
钢材的塑性通常用拉伸试验时的伸长率或断面收缩率来表示。
伸长率:将拉断后试件拼合起来,测量出标距长度l1,l1与试件受力前的原标距l0之差为塑性变形值,它与原标距l0之比为伸长率δ,按下式计算:
式中 δ——伸长率;
l0——试件原始标距长度,mm;
l1——断裂试件拼合后标距长度,mm;
断面收缩率:是指断口处的面积收缩量与原面积之比
试件拉伸前和断裂后标距的长度
2.冷弯性能
冷弯性能是指钢材在常温下承受弯曲变形的能力,以试验时的弯曲角度α和弯心直径d为指标表示。
钢材的冷弯试验是通过直径(或厚度)为a的试件,采用标准规定的弯心直径d(d = na,n为整数),弯曲到规定的角度时(180°或90°),检查弯曲处有无裂纹、断裂及起层等现象。若没有这些现象则认为冷弯性能合格。钢材冷弯时的弯曲角度α越大,d/a越小,则表示冷弯性能越好。
3. 冲击韧性
钢材的冲击韧性是处在简支梁状态的金属试样在冲击负荷作用下折断时的冲击吸收功。钢材的冲
击韧性与钢材的化学成分、组织状态,以及冶炼、加工都有关系。例如,钢材中磷、硫含量较高,存在偏析、非金属夹杂物和焊接中形成的微裂纹等都会使冲击韧性显著降低。
冲击韧性随温度的降低而下降,其规律是:开始下降缓和,当达到一定温度范围时,突然下降很多而呈脆性,这种性质称为钢材的冷脆性;
4. 耐疲劳性
受交变荷载反复作用时,钢材在应力低于其屈服强度的情况下突然发生脆性断裂破坏的现象,称为疲劳破坏。疲劳破坏是在低应力状态下突然发生的,所以危害极大,往往造成灾难性的事故。
在一定条件下,钢材疲劳破坏的应力值随应力循环次数的增加而降低。钢材在无穷次交变荷载作用下而不至引起断裂的最大循环应力值,称为疲劳强度极限,实际测量时常以2×106次应力循环为基准。一般来说,钢材的抗拉强度高,其疲劳极限也较高。
5.焊接性能
焊接是把两块金属局部加热,并使其接缝部分迅速呈熔融或半熔融状态,而牢固的连接起来。它是钢结构的主要连接形式。建筑工程的钢结构中,焊接结构要占90%以上。
钢材的焊接性能是指在一定的焊接工艺条件下,在焊缝及其附近过热区不产生裂纹及硬脆倾向,焊接后钢材的力学性能,特别是强度不低于原有钢材的强度。
钢材的化学成分对钢材的可焊性有很大的影响。随钢材的含碳量、合金元素及杂质元素含量的提高,钢材的可焊性降低。钢材的含碳量超过0.25%时,可焊性明显降低;硫含量较多时,会使焊口处产生热裂纹,严重降低焊接质量。
『叁』 钢筋的屈服强度越大强度越高吗
钢筋的屈服强度越大,抗拉强度也越大。但钢筋的屈服强度过高对混凝土构件来说,没有什么作用。
因为混凝土达到强度极限时的延伸率为0.002,当钢筋强度超过400MPa后,混凝土强度达到极限强度时钢筋没有屈服,不能充分利用钢筋的强度;否则混凝土强度下降,构件承载力下降。
大于屈服强度的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形。
(3)钢材受力超过屈服强度会发生什么意思扩展阅读:
建设工程上常用的屈服标准有三种:
1、比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp时即认为材料开始屈服。
2、弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以ReL表示。应力超过ReL时即认为材料开始屈服。
3、屈服强度 以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为Rp0.2。
『肆』 屈服极限与材料强度的关系
屈服强度指材料在出现屈服现象时所能承受的最大应力。
屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。大于此极限的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。
极限强度;ultimate strength
物体在外力作用下发生破坏时出现的最大应力,也可称为破坏强度或破坏应力。一般用标称应力来表示。根据应力种类的不同,可分为拉伸强度(σt)、压缩强度(σc)、剪切强度(σs)等。
体育锻炼方面,极限强度是指持续最大速度或最大力量(肌肉快速紧张地工作)做10~30秒的练习,心率在190次/分以上。
将钢材拉伸,钢材的伸长量与使用的力成正比,当力消失,钢材就会恢复到原来的长度。这是钢材的弹性范围内的现象,拉伸时发生的伸长只是弹性变形。
当将钢材拉伸,钢材伸长到一定的程度,继续再伸长时,力并不需要增加,只维持一定的大小就可以了。这种现象就是钢材的应力达到屈服强度了,这时如果将力撤除,钢材就不能在恢复原来的长度,被拉长了一点,发生了塑性变形。
如果钢材到达屈服强度以后,我们继续拉伸,则钢材伸长到一定的程度时,还继续拉伸,里就需要增加拉力才行了,这是叫做钢材的塑性变形结束,强度开始增加了,直到最后,钢材被拉断。拉断时的应力,就是钢材的极限强度。
『伍』 建筑钢材的力学性能和工艺性能
钢材的主要性能包括力学性能和工艺性能。其中力学性能是钢材最重要的使用性能,包括拉伸性能、冲击性能、疲劳性能等。工艺性能表示钢材在各种加工过程中的行为,包括弯曲性能和焊接性能等。
(1)拉伸性能
反映建筑钢材拉伸性能的指标,包括屈服强度、抗拉强度和伸长率。屈服强度是结构设计中钢材强度的取值依据。抗拉强度与屈服强度之比(强屈比)是评价钢材使用可靠性的一个参数。强屈比愈大,钢材受力超过屈服点工作时的可靠性越大,安全性越高;但强屈比太大,钢材强度利用率偏低,浪费材料。
钢材在受力破坏前可以经受永久变形的性能,称为塑性。在工程应用中,钢材的塑性指标通常用伸长率表示。伸长率是钢材发生断裂时所能承受永久变形的能力。伸长率越大,说明钢材的塑性越大。试件拉断后标距长度的增量与原标距长度之比的百分比即为断后伸长率。对常用的热轧钢筋而言,还有一个最大力总伸长率的指标要求。
预应力混凝土用高强度钢筋和钢丝具有硬钢的特点,抗拉强度高,无明显的屈服阶段,伸长率小。由于屈服现象不明显,不能测定屈服点,故常以发生残余变形为0.2%原标距长度时的应力作为屈服强度,称条件屈服强度,用σ0.2表示。
(2)冲击性能
冲击性能是指钢材抵抗冲击荷载的能力。钢的化学成分及冶炼、加工质量都对冲击性能有明显的影响。除此以外,钢的冲击性能受温度的影响较大,冲击性能随温度的下降而减小;当降到一定温度范围时,冲击值急剧下降,从而可使钢材出现脆性断裂,这种性质称为钢的冷脆性,这时的温度称为脆性临界温度。脆性临界温度的数值愈低,钢材的低温冲击性能愈好。所以,在负温下使用的结构,应当选用脆性临界温度较使用温度低的钢材。
(3)疲劳性能
受交变荷载反复作用时,钢材在应力远低于其屈服强度的情况下突然发生脆性断裂破坏的现象,称为疲劳破坏。疲劳破坏是在低应力状态下突然发生的,所以危害极大,往往造成灾难性的事故。钢材的疲劳极限与其抗拉强度有关,一般抗拉强度高,其疲劳极限也较高。
——2011年一级建造师《建筑工程管理与实务》考点
『陆』 名词解释:下屈服强度(钢筋)
屈服阶段属于力学性能中的拉伸性能。低碳钢筋从受拉到拉断,经历以下四个阶段:弹性阶段,屈服阶段,强化阶段,颈缩阶段。钢筋受力达到屈服强度以后,变形迅速发展,尽管尚未断裂破坏,但是因为变形过大已经不能满足使用要求。因此,屈服强度表示钢材在工作状态下允许达到的应力值,是结构设计中钢材强度取值的依据。H-NMeng
『柒』 屈服强度含义详细的解释啊
屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。
大于此极限的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。
(7)钢材受力超过屈服强度会发生什么意思扩展阅读:
影响屈服强度的外在因素有:温度、应变速率、应力状态。
随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。
虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。
参考资料来源:网络-屈服强度
『捌』 什么叫屈服强度
屈服强度是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。
大于此极限的外力作用,将会使零件永久失效,无法恢复。
处于平台阶段的力就是屈服力,试样屈服时首次下降前的力称为上屈服力,不计瞬时效应的屈服阶段的最小力称为下屈服力。相应的强度即为屈服强度、上屈服强度、下屈服强度。
(8)钢材受力超过屈服强度会发生什么意思扩展阅读
屈服强度与断裂强度
当我们开始加压,这时材料要进入弹性阶段,这个阶段的特征是:加力再大材料变形不大,松开后材料回弹。然后材料进入屈服阶段,屈服阶段的特性是不继续加力材料依然会有一定的变形,那么能使得屈服现象产生的最小应力就称为屈服点或者屈服应力。这时的极限力为屈服强度。
屈服点过了之后材料进入塑性阶段,这个阶段特点是,力增加不大材料变形变大,也就是材料的弹性模量降低了,(俗称,材料低头了或者屈服了)这个阶段你将力卸载掉,材料会产生永久变形;最后一个阶段断裂,这个时候材料在断裂前的最大应力就是材料的抗拉强度。也就是说的断裂强度。
这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。