『壹』 在什么结构钢在什么温度下失去承载力
钢结构通常在450~650℃温度中就会失去承载能力,发生很大的形变,导致钢柱、钢梁弯曲,结果因过大的形变而不能继续使用,一般不加保护的钢结构的耐火极限为15分钟左右。这一时间的长短还与构件吸热的速度有关。
『贰』 当温度达到600℃时,强度几乎降为零,完全失去了承载力,这说明钢材的
当温度达到600℃时,强度几乎降为零,完全失去了承载力,这说明钢材的(耐温)性能差。
『叁』 钢材不耐火的原因及防火方法
耐火材料是应用于钢铁工业中的重要材料,它主要应用在炼钢炉、炼铁炉的内衬,承装和运输金属及炉渣的钢包的内衬,下道工序加热钢坯的炉子内衬,以及传导热气的烟道和高炉炉身的内衬。那么钢材不耐火的原因及防火方法有哪些的呢?本文是我整理钢材不耐火的原因及防火方法的资料,仅供参考。
一是其在高温下强度降低快。在建筑结构中广泛使用的普通低碳钢温度超过350℃,强度开始大幅度下降,在500℃时约为常温时的1/2,600℃时为常温时的1/3。冷加工钢筋和高强钢丝在火灾高温下强度下降明显大于普通低碳钢筋和低合金钢筋,因此预应力钢筋混凝土构件,耐火性能远低于非预应力钢筋混凝土构件。
二是刚才热导率大,易于传递热量,使构件内部升温很快。
三是高温下钢材塑性增大,易于产生变形。四是钢构件截面面积较小,热容量小,升温快。
钢材和岩棉夹芯板同属无机材料,我们要知道钢材的耐火性能差的原因,就要先知道无机材料在高温下存在需解决的问题。无机材料由于在高温时热膨胀收缩不一致可能导致导热、变形、爆裂、强度降低、组织松懈等等问题。此外对铝材、花岗石、大理石、钠钙玻璃等建筑材料在高温时还要考虑软化、熔融等现象的出现。为了保障建筑钢材的质量,在生产时必须在严格的技术控制下进行,它具有强度大、塑性好和韧性好、品质均匀、可焊可铆、制成的钢结构质量轻等有点。但是它的防火性能却是比较差的,这一点岩棉夹芯板比它要好很多。
钢材不耐火的原因:一是其在高温下强度降低快。在建筑结构中广泛使用的普通低碳钢温度超过350℃,强度开始大幅度下降,在500℃时约为常温时的1/2,600℃时约为常温时的1/3。冷加工钢筋和高强钢丝公火火高温下强度下降明显大于普通低碳钢筋和低合金钢筋,因此预应力钢筋混凝土构件,耐火性能远低于非预应力钢筋混凝土构件。二是钢材热导率大,易于传递热量.使构件内部升温很快。三是高温下钢材塑性增大,易于产生变形。四是钢构件截回面积较小,热容量小,升温快。处于火灾高温下的裸露钢结构往往在15min左右即丧失承载能力,发生倒塌破坏。
钢结构不防火是说在火灾高温作用下,其力学性能如屈服强度、弹性模量等却会随温度升高而降低,通常在450~650℃温度中就会失去承载能力,发生很大的形变,导致钢柱、钢梁弯曲,结果因过大的形变而不能继续使用。采用以下方法可以有效的提高钢结构的防火性能:
一、外包层。就是在钢结构外表添加外包层,可以现浇成型,也可以采用喷涂法。现浇成型的实体混凝土外包层通常用钢丝网或钢筋来加强,以限制收缩裂缝,并保证外壳的强度。喷涂法可以在施工现场对钢结构表面涂抹砂泵以形成保护层,砂泵可以是石灰水泥或是石膏砂浆,也可以掺入珍珠岩或石棉。同时外包层也可以用珍珠岩、石棉、石膏或石棉水泥、轻混凝土做成预制板,采用胶粘剂、钉子、螺栓固定在钢结构上。
二、充水(水套)。空心型钢结构内充水是抵御火灾最有效的防护措施。这种方法能使钢结构在火灾中保持较低的温度,水在钢结构内循环,吸收材料本身受热的热量。受热的水经冷却后可以进行再循环,或由管道引入凉水来取代受热的水。
三、屏蔽。钢结构设置在耐火材料组成的墙体或顶棚内,或将构件包藏在两片墙之间的空隙里,只要增加少许耐火材料或不增加即能达到防火的目的。这是一种最为经济的防火方法。
四、膨胀材料。采用钢结构防火涂料保护构件,这种方法具有防火隔热性能好、施工不受钢结构几何形体限制等优点,一般不需要添加辅助设施,且涂层质量轻,还有一定的美观装饰作用,属于现代的先进防火技术措施。
耐火材料是应用于钢铁工业中的重要材料,它主要应用在炼钢炉、炼铁炉的内衬,承装和运输金属及炉渣的钢包的内衬,下道工序加热钢坯的炉子内衬,以及传导热气的烟道和高炉炉身的内衬。因此,简单地说,我们可以把它视作结构材料,它们可以承受的温度为260-1760℃。
耐火材料价格昂贵,任何耐火材料的事故都将导致浪费大量的生产时间和设备,有时甚至是产品本身。耐火材料类型也将影响能量的消耗和产品质量。因此,选取最适合于各种应用的耐火材料是至关重要的。而经济效益对此有很大的影响,最适合某种用途的耐火材料不必是用得最久的材料,而是能在安装成本与使用性能之间取得平衡的材料,这种平衡不是固定不变的,而是随着新工艺或新耐火材料的引入而不断变化的。历史证明,坚持不懈地寻求和开发更合理的冶金工艺,极大地推动了耐火材料的发展,这些耐火材料问题的迅速解决又成为近代钢铁工艺不断发展的重要素。本文的内容是讨论包括这些问题的许多因素,以及提供解决这些问题的信息。
耐火材料可以有许多分类方法,其中没有一种是令人十分满意的。从化学观点来看,耐火材料和一般物质一样分为三类:酸性、碱性和中性。理论上,酸性耐火材料不能应用于碱性炉渣,碱性气体或烟气,而在上述碱性介质中,最好应用碱性耐火材料。实际上,由于各种原因,这些规则不断地被打破。因而,长期以来化学分类只是学术上的,对于指导实际应用没有多少价值。而且真正意义上的中性耐火材料是否存在也值得怀疑。通过用途来分类是相当广泛采用的方法,如高炉耐火材料或氧气炼钢耐火材料,而且这些分类在不断地被修正。
因此,我们根据所准备的原料和加工后的主要矿物质对耐火材料进行分类。我们确信这种分类方法为清楚理解钢厂耐火材料的本质提供了最大的可能性。
A.氧化镁或氧化镁-氧化钙类
这一类包括所有由天然或合成的菱镁矿、水镁矿、白云石得来的耐火材料。它们组成了最重要的一类用于炼钢过程的碱性耐火材料。所有这些材料被用作氧化镁的来源。
合成氧化镁由海水或卤水中合成得来的氧化镁(方镁石)代表了最重要的一种用于现代炼钢设备的耐火材料原料。生产致密的合成氧化镁需要很多步骤,简单概括如下:
(1)Mgcl2+Ca,Mg(OH)2 =Mg(OH)2+CaCl2
海水或卤水熟白云石氢氧化镁残留盐
(2) Mg(OH)2 ℃Mg0(低密度的)
(3) MgO ℃ Mgo(致密的)
所产生的致密氧化镁一般纯度可达95%-99%,这取决于生产过程和最终应用要求。如上所示,氧化镁可以由海水和熟石灰得到。最终产品的致密度是通过在竖炉中高温焙烧以及大面积的锻烧,再经机械压实而得到的。通过预烧耐火材料原料来从根本上消除其永久的收缩量或延伸量极其重要,这一点是显而易见的,因为我们不可能指望在使用中会过度收缩或延伸的材料能够用于储存适当程度的金属液或渣子。世界各地均有生产合成氧镁(方镁石)的大工厂,在美国密执安州由卤水井生产,而由海水中生产氧化镁的工厂位于佛罗里达州、得克萨斯州、加里福尼亚州和马里兰州。
B.铬镁类
天然存在的铬矿由耐火材料尖晶石构成,其中尖晶石是由不同比例的MgO,FeO,Al2O3,Cr2O3及Fe2O3和少量硅酸盐组成的混合物。成分变化较大的铬矿适合于做耐火材料用,大多数合适的格矿耐火材料产于菲律宾和南非,有些铬矿在使用前必须经过精选以减少脉石(主要是二氧化硅)的含量。在耐火材料产品中,铬矿主要与氧化镁结合使用,这样可以将两种材料的最佳特点结合起来。铬矿在应用前不需要焙烧。
C.硅质耐火材料
石英砂石英砂或硅石是纯度最高、应用最广泛的含硅原料。产于宾夕法尼亚州,威斯康辛州、亚拉巴马州、犹他州和加里佛尼亚州的大量岩石中含有超过98%的SiO2,长期以来它们用于硅砖生产。目前大量用于焦炉的硅砖仍然由石英砂生产。通过冲洗石英卵石和卵石团块可以生产高纯度的二氧化硅。
砂石砂石或火石基本上是由粘着的砂粒构成的一种沉积岩,通常含有90%~96%的SiO2,3% - 5%的Al2O3及一些氧化铁和石灰。砂石相对柔软,且有条纹,这样易于切割成块状或其他形状。
熔融石英高纯度二氧化硅用电熔融后可以用来生产非晶或隐晶的熔融石英、这种具有特殊性能的团块,用于低温耐火材料。
锆石和二氧化锆锆石耐火材料(ZrO2·SiO2)是由产于澳大利亚和佛罗里达的特殊锆砂,经过浮选和磁精选生产出的。稳定的二氧化锆是由同种锆砂通过电熔融并除去二氧化硅和其他杂质生产出来的。
D耐火粘土类.
半硅质耐火粘土半硅质耐火粘土这一术语是指SiO2含量有一个较大范围的粘土这里所说的系指含SiO2至少达75%用于半硅砖生产的粘土,它们具有很少的杂质如碱金属,碱土金属氧化物和铁氧化物。 塑性耐火粘土是一种具有充分的天然塑性的耐火材料,用以粘接非塑性材料。
燧石耐火粘土它是一种硬的或像燧石状的耐火粘土,以非层状岩石存在,几乎没有天然的塑性,具有贝壳状断口。
球状耐火粘土也叫伯雷耐火土或伯雷硬质粘土,球状耐火粘土以岩石形式存在,有含铝或含铁的球状物,或两者均有,靠粘土粘接。 高岭土尽管不是耐火粘土,但某些高岭土是高级耐火材料,且越来越多地用于制作耐火砖。高岭土可沉积和残留,并且相当纯,一般非常接近理论粘土成分,用AI2O3·2SiO2·2H2O表示。
正像后面将要介绍的那样,耐火粘土一般通过预烧粘土和生粘土或未烧粘土相结合的方法生产。
E.高铝类
这类包括用于生产耐火粘土所达不到的、含AI2O2高达44% 以的那些耐火材料,有很多种含不同矾土量的此类耐火材料,介绍如下: 含铝高岭土通过选矿和精选,可以从沉积在佐治亚州和阿拉巴马州的高岭土中生产出含AI2O3达50%-70%的原材料来,这些产品含有害杂质(如碱金属和铁氧化物)量很低,广泛应用于耐火材料。近年来,先进的焙烧设备已经被用来将这此含铝高岭土制成致密、稳定的材料。
硅线石、红柱石和蓝晶石这些矿石化学式均为Al2O3·SiO2,理论上含62.9%的Al2O3和37.1%的SiO3。加热时,全部形成莫来石(2Al2O3·2SiO2)和硅质玻璃体,只是分解的难易程度不同。蓝晶石最易转化,转化温度为1, 325℃,而硅线石的转化最困难,转化温度为1, 530℃。近年来产于佛吉尼亚州和北卡罗米纳州的蓝晶石已经广泛地用于国内作为原料或锻烧形式的耐火材料的生产。
高纯矾土本质上,由用拜耳法从铝矾土中得到的硝酸铝生产出的锻烧铝矾土,通过烧结或熔解,可得到致密而纯的Al2O3。尽管氧化
铝材料昂贵,但当其在纯态或与前述粘土、铝矾土或其他耐火材料一起使用时,可为耐火材料添加特殊性能。
矾土可以和纯二氧化硅预反应以生产莫来石填料,或在加工过程中就地生产砖。
F.碳类
这一类包括天然或人造石墨,各种类型的煤、焦炭、碳化硅和氮化硅。石墨在国内外均分布广泛。由于石墨常与石灰岩或硅酸岩混合存在,所以它的提纯非常昂贵。在塞隆和马达加斯加发现的片状石墨适合于生产坩埚和塞棒头,塞棒头上石墨由大块粘土粘接。在与其他耐火材料混合使用时无定形的和片状的石墨可以增加许多耐火材料的抗渣性。
碳砖或碳块作为耐火材料应用非常广泛,并且可以由铸造焦炭、石油焦炭或煅烧无烟煤生产。沥青也能作为粘和剂应用于此类耐火材料中。碳化硅是在高温电炉中利用熔融石油焦和石英砂来生产的,纯碳化硅可以直接使用,或作为添加料与耐火粘土、高纯矾土或碳质耐火材料一起给耐火材料赋予一些特殊性能。耐火原材料
耐火原材料已经在前面介绍过,锻烧材料经焙烧,去除挥发成份及水分,使材料致密,
在以后的使用中收缩量和反应最小。锻烧的温度范围为1093℃一1925℃生的或未锻烧的材料使用时要比焙烧过的材料便宜,并且用于给某些耐火材料赋予某些可取的性能,诸如塑性,或体积膨胀。在生产或使用中,用粘合剂以增加耐火材料的强度,粘合剂包括: (a)临时粘合剂,例如纸的副产品、糖或某些粘土,以增加生产中的输送强度。
(b)化学粘合剂,它们能在生产中、生产后或整体材料安装时增加其强度。例如,硅酸钠、磷酸、磷酸玻璃、铬酸、硼酸和硫酸镁。
(c) 水泥粘合剂,这种粘合剂与水混合时靠液压粘合。用于耐火材料的此类粘合剂主要是钙一矾水泥,它能迅速粘合,并能维持粘合强度到中温。
(d) 有机粘合剂,诸如用于还原气氛的焦油,沥青,树脂,在这种气氛下碳残留物保证粘接强度,或起防止变化作用。
在耐火材料生产前,生料处理过程对最终产品的成分和性能有重要影响。
高炉和附属设备中的耐火材料:
这部分涉及到大量有关高炉耐火材料的设计和应用的信息,有关讨论将补充这些信息。为方便起见,高炉耐火材料按其使用部位分为三部分:出铁场用耐火材料,炉体用耐火材料,热风炉及附属设备用耐火材料。
小型高炉的出铁口材料通常是将粘土、焦炭和沥清混合,并且加水挤压成形、而对于条件苛刻的大高炉,则需要使用无水出铁口材料,并且要用焦油和其他能提高耐腐蚀性的骨料压实(包括高铝团块,二氧化硅,硅镍合金等等),这种无水材料的性质要求当它最初较软时,堵铁口泥炮在它的位置上保留一小段时间,当它流到位后由于受热而变硬,在每一次出铁后,这种无水材料的消耗小于水处理的材料,而且其热强度也比水处理材料高得多。
出铁沟耐火材料的设计也依赖于高炉的体积,对于小的且只有一个出铁口的高炉,出铁沟被设计成定期作业,然后排空,经常用一些低价的材料喷补炉衬或填塞加以维护,而对于大的有多个出铁口的高炉,出铁沟经常长期工作,不断地与热铁水接触,需要用昂贵的高铝塑性材料和含有碳、硅的材料定期重新砌衬,大高炉出铁沟更换前的寿命可达40万到2000万公吨。
高炉炉体高炉内条件变化很大,它的耐火材料损耗可以有几种机理,在新的炉体内,一般倾向于用高铝产品(氧化铝的含量在6o%一99%),或具有高热导率的碳材料,或特殊的Sic耐火材料。好的高炉炉衬主要依赖于所使用的冷却系统,以及在高炉超龄条件下提供待续有效冷却的能力。对于现代高炉,尽管使用昂贵的耐火材料延长了耐火材料的寿命,但寿命延长毫无疑问主要是由于更有效的冷却(例如二倍的烟道冷却板)和由于理想的高炉负荷而带来的稳定操作条件。高导热型砖带有外部冷却,而低导热材料使用冷却板提供稳定的炉衬厚度。炉腹区的耐火砖除了高导热率外还必须抵抗前述各种损耗因素,这类耐火材料中只有最高级的才能做到这一点。
在炉缸,由于钢水凝固线在稳定的位置可以保持很多年,带有或不带下冷却的厚碳砖设计使炉龄日益延长。
高炉内衬的寿命非常依赖于原始设计和操作条件,以至于不同规格的炉子,在不同的实践中,很难比较不同耐火材料的性能。炉衬的
寿命一般为3-10年,或者300万吨到2000万吨的产量。通过用特殊的水泥粘接浇注块喷补高炉而经常进行的中间补炉可以短期延长高炉的使用,用这种喷补工序后可以使需要大修的高炉延长1-3年使用。最近,特殊的无水浆材料已经被用来修复炉腹和低炉体区域,方法是在施加压力的情况下,喷浆到需要修补的地方。
『肆』 钢构架房屋内的槽钢在一次火灾事故中变形,请问槽钢被火烧变形需多少度的温度
教课书上讲,通常温度达到500度时,钢材会变形,失去几乎一半的强度,如果在此温度下经过15分钟,就会产生垮塌。
也有资料分析:在火灾时,钢材强度随着温度上升而急剧下降。当温度达到350℃、500℃、600℃时,钢材的强度分别下降1/3、1/2、2/3。
内部应力的变化是一个复杂的事情,要看火灾时燃烧方向、温度、燃烧速度等进行综合判断。通常没有一个明确的结论。
『伍』 普通钢可以承受900℃高温吗
钢材的机械强度随温度的升
高而降低.当钢材的温度升高到某一值,而使其失去支内撑能力,
这一温度容值定义为该钢材的临界温度.一般常用建筑钢材的临
界温度为540℃.对于建筑物火灾,火场温度大多在800~1200
℃之间,在火灾发生的10分钟内,火场温度即可高达700℃以
上.对裸露的钢构件,在这样的火灾温度下,也只有几分钟其温
度就可上升到500℃而达到其临界值,进而失去承载能力,导致
建筑物垮塌.
『陆』 钢结构的主要缺点是
钢结构重量轻 钢结构的容重虽然较大,单与其它建筑材料相比,它的强度却高很多,因而当承受的荷载和条件相同时,钢结构要比其它结构轻,便于运输和安装,并可跨越更大的跨度。
二、钢材的塑性和韧性好 塑性好,使钢结构一般不会因为偶然超载或局部超载而突然断裂破坏。韧性好,则使钢结构对动力荷载的适应性较强。钢材的这些性能对钢结构的安全可靠提供了充分的保证 。
三、钢材更接近于匀质和各向同性体 钢材的内部组织比较均匀,非常接近匀质和各向同性体,在一定的应力幅度内几乎是完全弹性的。这些性能和力学计算中的假定比较符合,所以钢结构的计算结果较符合实际的受力情况。
四、钢结构制造简便,易于采用工业化生产,施工安装周期短 钢结构由各种型材组成,制作简便。大量的钢结构都在专业化的金属结构制造厂中制造;精确度高。制成的构件运到现场拼装,采用螺栓连接,且结构轻,故施工方便,施工周期短。此外,已建成的钢结构也易于拆卸、加固或改造。
五、钢结构的密封性好 钢结构的气密性和水密性较好。
六、钢结构的耐热性好,但防火性能差 钢材耐热而不耐高温。随着温度的升高,强度就降低。当周围存在着辐射热,温度在150度以上时,就应采取遮挡措施。如果一旦发生火灾,结构温度达到500度以上时,就可能全部瞬时崩溃。为了提高钢结构的耐火等级,通常都用混凝土或砖把它包裹起来。
七、钢材易于锈蚀,应采取防护措施 钢材在潮湿环境中,特别是处于有腐蚀介质的环境中容易锈蚀,必须刷涂料或镀锌,而且在使用期间还应定期维护 。
钢结构与其它结构相比,在使用功能、设计、施工、以及综合经济方面都具有优势,在住宅建筑中应用钢结构的优势主要体现在以下几个方面:
一、钢结构住宅比传统建筑能更好的满足建筑上大开间灵活分隔的要求,并可通过减少柱的截面面积和使用轻质墙板,提高面积使用率,户内有效使用面积提高约6%。
二、节能效果好,墙体采用轻型节能标准化预制墙板代替粘土砖,保温性能好,节能50%,每户每平方米可节约取暖纳凉费用18元。
三、将钢结构体系用于住宅建筑可充分发挥钢结构的延性好、塑性变形能力强,具有优良的抗震抗风性能,大大提高了住宅的安全可靠性。尤其在遭遇地震、台风灾害的情况下,能够避免建筑物的倒塌性破坏。如95年的日本阪神大地震中,99年的台湾大地震中未倒塌的几乎全部为H型钢制作的钢结构建筑物。
四、建筑总重轻,钢结构住宅体系自重轻,约为混凝土结构的一半,可以大大减少基础造价。
五、施工速度快,工期比传统住宅体系至少缩短三分之一,因而可降低综合造价,综合造价降低5%。加快资金周转,大大提高投资效益。
六、环保效果好。钢结构住宅施工时大大减少了砂、石、灰的用量,所用的材料主要是绿色,可回收或降解的材料,在建筑物拆除时,大部分材料可以再生或降解,不会造成很多垃圾。
七、具有较高的性能价格比。
八、建筑风格灵活、丰实。大开间设计,户内空间可多方案分割,满足用户的不同需求。
九、符合住宅产业化和可持续发展的要求。钢结构适宜工厂大批量生产,工业化程度高,并且能将节能、防水、隔热、门窗等先进成品集合于一体,成套应用,将设计、生产、施工一体化,提高住宅产业的水平。
『柒』 请问温度对Q235和Q345圆钢有什么影响,在什么温度的时候的影响最大。知道的朋友指教一下,小弟不胜感激!
http://tjbbs.soufun.com/1110138303~-1~1148/7275416_7275416.htm
http://wenwen.soso.com/z/q161142859.htm
钢材的机械强度随温度的升高而降低.当钢材的温度升高到某一值,而使其失去支撑能力,这一温度值定义为该钢材的临界温度.
一般常用建筑钢材的临界温度为540℃.对于建筑物火灾,火场温度大多在800~1200
℃之间,在火灾发生的10分钟内,火场温度即可高达700℃以上.对裸露的钢构件,在这样的火灾温度下,也只有几分钟其温度就可上升到500℃而达到其临界值,进而失去承载能力,导致建筑物垮塌.因此,对钢结构进行防火保护势在必行.对钢结构进行防火保护有多种多样的形式和措施,其中使用防火涂料是一种比较理想的方法.钢结构防火涂料喷涂在钢构件表面,起防火隔热保护作用,防止钢材在火灾中迅速升温而降低强度,避免钢结构失去支撑能力而导致建筑物垮塌.早在70年代,国外对钢结构防火涂料的研究和应用就开展了积极的工作并取得了较好的成效.80年代初,国外钢结构防火涂料进入中国市场得到应用.随着我国建筑业的不断发展,各种建筑象雨后春笋,日益增多,各部门对使用钢结构防火涂料作钢材防火保护的要求也日益增加,钢结构防火涂料的研究,生产及推广应用正逐渐进入高
潮.
钢材
(1)钢材在高温下的热物理性质
①热学性质。钢材的密度。热传导率、比热、导热系数和热膨胀系数,是决定火灾条件下钢材温度上升速度和钢结构热应力的重要参数。钢材的导热系数大、比热小是被火烧以后迅速升高温度的根本原因。
②力学性质。温度升高,钢材的力学性质发生改变,变化的大小取决于温度的高低和钢材的种类。一般温度较高时,没有一个明显的屈服点,因为钢材的应力——应变曲线没有水平部分,而是继续迅速上升,直到应力超过最大值而发生断裂。预先经过冷拔或热处理等的钢材,其强度大大高于低碳钢。
③钢材的弹性模量是应力与应力引起变形的比率。它是度量钢材,抵抗变形能力的。在给定应力的条件下,钢材的弹性模量越大,变形就越小。钢材的弹性模量,一般是随着温度的增加而迅速减小。
④钢材的线胀系数是表示钢材由于加热而产生的膨胀或收缩的特性。温度升高,钢材的长度伸长,其膨胀系数是正的;缩短时,其系数是负的。各种钢材的线胀系数,根本不取决于钢的含碳量。钢随温度增加而产生的膨胀,只有在约700°C以下时才显得有些规律,而在700°C以上时钢材实际上己失去了它的所有强度。
⑤蠕变。与荷载作用到材料上去的同时,出现变形。当荷载长期作用时,变形也随时间的延长而增大。这种随时间变化的变形称为蠕变。钢材的蠕变率取决于负荷后的时间、材料的温度和材料承受的压力。由于构件类型的差别而变化很大,并且也为荷载和加热速度强烈地影响着。此外,火灾以后结构是否能继续使用,也影响允许蠕变和钢材的温度。一般说来,冷拔钢的蠕变温度比低碳钢的蠕变温度低。
(2)钢结构的临界温度
①钢梁的临界温度。一般来说,大的荷载可使工型钢梁的耐火极限降低。钢梁的破坏则必须等到整个截面全面到达屈服点,这需要较高的温度,而且还取决于其截面的形状。相对来说,超静定梁比静定梁的;临界温度要高,而且上梁底的温度一般都高于梁顶的温度。下缘和上缘的温度差可达100~200°C。当有温度梯度时,梁的承载能力将低于温度均布(上下缘平均温度)时的荷载能力。
②钢柱的临界温度。它取决于荷载和钢的性质以外,绝大部分还取决于柱子的细长比。长的柱于,在弹性变形的条件下就被压弯了。所以,在实际应用时,长柱子(入≥100)的临界温度采用520°C,短柱子(入 <100)的临界温度采用420°C。
(3)钢构件的防火保护
①钢构件的防火保护方法一般可采取设置阻火屏障、在钢构件表面浇注混凝土、用不燃材料包覆钢构件和在管材内充水,以及在钢构件表面喷涂膨胀原浆防火物、无机纤维材料、无机防火隔热涂料等方法。
②喷涂施工与质量检查。防火涂料采用特制的喷涂机械,将配好的涂料喷涂在钢构件上,根据耐火等级要求,喷涂相应的厚度。施工过程中则应注意必须按照指定机构的防火实验数据和厂家的建议进行施工。喷涂前要清除构件表面的油污、灰尘及其它影响粘附力的物质,并把安装在构件上的吊架、支撑等先安装好,而导线、气管、水管等要在喷涂后再安装。为了保证质量,常要由专门培训的人员施工,由消防监督机关会同施工单位抽样检测、验收。
钢材的物理性质:钢材在正温范围内,温度约在200℃以上时,随着温度的升高,钢材的抗拉强度、屈服点和弹性
模量都有变化,总的趋势是强度降低、塑性增大;温度在250℃左右,钢材的抗拉强度略有提高,而塑性却降低,因而
钢材呈现脆性,在此区域对钢材再加热,钢材可能产生裂逢。此外,当温度达到250-350℃范围内时。钢材将产生徐变
现象,钢材的性能受到不同程度的损伤。据一些专家对钢材进行温度试验分析,当钢材在升温1h,恒温加热1小时后进
行检测,结果是有屈服台阶的16Mn钢筋在900℃以下时的强度和延伸率变化很小,温度达到1000℃时,钢材强度下降10
%;无屈服台阶的冷拔低碳钢丝经过2h升温至600℃以下,则强度受到影响不大;而温度在600℃以上时的极限强度下降
达40%。据有关专家对大多数火灾事故现场中构件钢筋的测试结果表明,混凝土保护层爆落的预应力板钢丝受热温度超
过600℃,梁柱构件钢筋温度低于600℃,因而,在一般情况下,火灾对钢筋的影响较比混凝土小,对于I、II级钢筋在
温度达到900℃以上时才有明显的影响,由于钢筋构件混凝土保护层的作用,通常构件中的钢筋温度低于此值,可以说
火灾一般对I、II级钢筋的影响不很大。但是,在600℃以上的高温却使冷却后的冷拔低碳钢丝强度大幅下降40%左右,
从中可以说明火灾对预应力钢筋混凝土板的影响较大,由于建筑荷载大部分承重在板上,从而破坏结构的整体性,造成
更大的危害。
『捌』 钢材在不同温度下的力学性能有何变化提高钢结构防火性能的措施有哪些
普通钢材在温度超过250度以上,就出现蓝脆现象,强度迅速下降,力学性能大的降低。提高结构防火性能的措施有外表喷涂防火涂料,或者用其他耐火材料包裹