导航:首页 > 钢材市场 > 海岛上什么钢材不怕腐蚀

海岛上什么钢材不怕腐蚀

发布时间:2024-10-04 10:08:06

镀锌钢管不锈钢管更耐用

镀锌管和不锈钢管相比

不锈钢管最耐用

镀锌管能用个十年八年的就很好了

不锈钢管能用一辈子

价格上来说

不锈钢管比镀锌管贵10倍

镀锌管价格有便宜的优势

不锈钢管一劳永逸 省平时的加工费

❷ 据记载,人类利用太阳能已有3000多年的历史。 加上问题补充,这段话的出处是什么也就是说书名是什么

这是从一篇叫做《太阳能简介》的论文中写到的,原文如下。
太阳能简介
摘要
太阳能作为一种取之不尽用之不竭的能源,受到世界各国的重视。太阳能广泛用于发电、制冷、制热等方面,已经和世界的经济生活联系在一起
关键词
太阳能污染硅电池
1. 前言
太阳能(Solar Energy),一般是指太阳光的辐射能量,在现代一般用作发电,是太阳内部或者表面的黑子连续不断的核聚变反应过程产生的能量。广义太阳能包括:地球上的风能、水能、海洋温差能、波浪能和生物质能以及部分潮汐能,化石燃料(如煤、石油、天然气等)。狭义太阳能则限于太阳辐射能的光热、光电和光化学的直接转换。
太阳能源自太阳。太阳是一个炽热的气态球体,它的直径约为1.39×106km,质量约为2.2×l027t,为地球质量的3.32×105倍,体积是地球的1.3×106倍,平均密度为地球的1/4。太阳作为一个巨大、久远、无尽的能源。尽管太阳辐射到地球大气层的能量仅为其总辐射能量(3.75×10^26KW)的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当于500万吨煤。
总的说来太阳能具有能量十分巨大、供应时间长、分布广阔、获取方便、安全、干净、不污染环境的优点。但也存在问题:1)能量分散,能量密度低;2)稳定性差,受日夜季候、地理纬度等影响,太阳能不断地生变化;3)装置成本过高;4)制造过程中污染严重,使用中可能有视觉污染。
我国的太阳能资源和分布广泛,有着十分丰富的太阳能资源。根据中国气象科学研究院的研究,有2/3以上国土面积,年日照在2000小时以上,年平均辐射量超过0.6GJ/cm2,各地太阳年辐射量大致在930~2330kW·h/m2之间。

从全国太阳年辐射总量的分布来看,西藏、青海、新疆、内蒙古南部、山西、陕西北部、河北、山东、辽宁、吉林西部、云南中部和西南部、广东东南部、福建东南部、海南岛东部和西部以及台湾省的西南部等广大地区的太阳辐射总量很大。
2. 太阳能利用历史
人类利用太阳能已有3000多年的历史。将太阳能作为一种能源和动力加以利用,只有300多年的历史。近代太阳能利用历史可以从1615年法国工程师所罗门·德·考克斯在世界上发明第一台太阳能驱动的发动机算起。该发明是一台利用太阳能加热空气使其膨胀作功而抽水的机器。在1615年~1900年之间,世界上又研制成多台太阳能动力装置和一些其它太阳能装置。这些动力装置几乎全部采用聚光方式采集阳光,发动机功率 不大,工质主要是水蒸汽,价格昂贵,实用价值不大,大部分为太阳能爱好者个人研究制造。
20世纪太阳能科技发展历史大体可分为七个阶段 :
第一阶段(1900-1920)
太阳能研究的重点仍是太阳能动力装置,但采用的聚光方式多样化,且开始采用平板集热器,装置逐渐扩大,最大输出功率达73.64kW,实用目的比较明确,造价仍然很高。建造的典型装置有:
1. 1901年,在美国加州建成一台太阳能抽水装置;
2. 1902 -1908年,在美国建造了五套双循环太阳能发动机,采用平板集热器和低沸点工质;
3. 1913年,在埃及开罗以南建成一台由5个抛物槽镜组成的太阳能水泵,每个长62.5m,宽4m,总采光面积达1250m2。
第二阶段(1920-1945)
在这20多年中,太阳能研究工作处于低潮,参加研究工作的人数和研究项目大为减少,其原因与矿物燃料的大量开发利用和发生第二次世界大战(1935-1945)有关,太阳能又不能解决当时对能源的急需,因此使太阳能研究工作逐渐受到冷落。
第三阶段(1945-1965)
二战结束后的20年中,一些有远见的人士注意到石油和天然气资源正在迅速减少,呼吁人们重视这一问题,从而逐渐推动了太阳能研究工作的恢复和开展。比较突出的研究进展有:
1955年,以色列泰伯等在第一次国际太阳热科学会议上提出选择性涂层的基础理论,并研制成实用的黑镍等选择性涂层,为高效集热器的发展创造了条件;
1954年,美国贝尔实验室研制成实用型硅太阳电池,为光伏发电大规模应用奠定了基础。
这一阶段里还有其它一些重要成果,比较突出的有:
1952年,法国国家研究中心在比利牛斯山东部建成一座功率为50kW的太阳炉。
1960年,在美国佛罗里达建成世界上第一套用平板集热器供热的氨-水吸收式空调系统,制冷能力为5冷吨。
1961年,一台带有石英窗的斯特林发动机问世。在这一阶段里,加强了太阳能基础理论和基础材料的研究,取得了如太阳选择性涂层和硅太阳电池等技术上的重大突破。平板集热器有了很大的发展,技术上逐渐成熟。太阳能吸收式空调的研究取得进展,建成一批实验性太阳房。对难度较大的斯特林发动机和塔式太阳能热发电技术进行了初步研究。
第四阶段(1965-1973)
这一阶段,太阳能的研究工作停滞不前,主要原因是太阳能利用技术处于成长阶段,尚不成熟,并且投资大,效果不理想,难以与常规能源竞争,因而得不到公众、企业和政府的重视和支持。
第五阶段(1973-1980)
“能源危机”(有的称“石油危机”)在客观上使人们认识到:现有的能源结构必须彻底改变,应加速向未来能源结构过渡。从而使许多国家,尤其是工业发达国家,重新加强了对太阳能及其它可再生能源技术发展的支持,在世界上再次兴起了开发利用太阳能热潮。
1973年,美国制定了政府级阳光发电计划,太阳能研究经费大幅度增长,并且成立太阳能开发银行,促进太阳能产品的商业化。
日本在1974年公布了政府制定的“阳光计划”,其中太阳能的研究开发项目有:太阳房 、工业太阳能系统、太阳热发电、太阳电池生产系统、分散型和大型光伏发电系统等。
这一时间太阳能研究领域不断扩大,研究工作日益深入,取得一批较大成果,如CPC、真空集热管、非晶硅太阳电池、 光解水制氢、太阳能热发电等。
太阳热水器、太阳电他等产品开始实现商业化,太阳能产业初步建立,但规模较小,经济效益尚不理想。
第六阶段(1980-1992)
开发利用太阳能热潮,进入80年代后逐渐进入低谷。世界上许多国家相继大幅度削减太阳能研究经费,其中美国最为突出。
导致这种现象的主要原因是:世界石油价格大幅度回落,而太阳能产品价格居高不下,缺乏竞争力;太阳能技术没有重大突破,提高效率和降低成本的目标没有实现,以致动摇了一些人开发利用太阳能的信心;核电发展较快,对太阳能的发展起到了一定的抑制作用
第七阶段(1992-今)
由于大量燃烧矿物能源,造成了全球性的环境污染和生态破坏,对人类的生存和发展构成威胁。在这样背景下,1992年联合国在巴西召开“世界环境与发展大会”,会议通过了《里约热内卢环境与发展宣言》、《21世纪议程》和《联合国气候变化框架公约》等一系列重要文件,把环境与发展纳入统一的框架,确立了 可持续发展的模式。这次会议之后,世界各国加强了清洁能源技术的开发,将利用太阳能与环境保护结合在 一起,使太阳能利用工作走出低谷,逐渐得到加强。世界环发大会之后,中国政府对环境与发展十分重视,提出10条对策和措施,明确要“因地制宜地开发和推广太阳能、风能、地热能、潮汐能、生物质能等清洁能源”,制定了《中国21世纪议程》,进一步明确 了太阳能重点发展项目。
3. 太阳能利用方式
3.1 光-热能转换
光热转换是利用太阳辐射加热物体而获得热能的一种太阳能利用方式。常见应用有太阳能热水器、反射式太阳灶、高温太阳炉、地膜、大棚、温室等。
3.1.1集热器
太阳辐射的能流密度低,在利用太阳能时为了获得足够的能量,或者为了提高温度,必须采用一定的技术和装置(集热器),对太阳能进行采集。太阳能集热器是把太阳辐射能转换成热能的设备,它是太阳能热利用中的关键设备。常见有可分为聚光型和非聚光型。
3.1.1.1非聚光型集热器
非聚光型集热器常见有平板和真空管集热器。
平板集热器
平板集热器是非聚光类集热器中最简单且应用最广的集热器。它吸收太阳辐射的面积与采集太阳辐射的面积相等,能利用太阳的直射和漫射辐射。按工质划分有空气集热器和液体集热器,目前大量使用的是液体集热器;按吸热板芯材料划分有钢板铁管、全铜、全铝、铜铝复合、不锈钢、塑料及其它非金属集热器等; 按结构划分有管板式、扁盒式、管翅式、热管翅片式、蛇形管式集热器,还有带平面反射镜集热器和逆平板集热器等;按盖板划分有单层或多层玻璃、玻璃钢或高分子透明材料、透明隔热材料集热器等。
目前,国内外使用比较普遍的是全铜集热器和铜铝复合集热器。铜翅和铜管的结合,国外一般采用高频焊,国内以往采用介质焊,1995年我国也开发成功全铜高频焊集热器。1937年从加拿大引进铜铝复合生产线,通过消化吸收,现在国内已建成十几条铜铝复合生产线。 为了减少集热器的热损失,可以采用中空玻璃、聚碳酸酯阳光板以及透明蜂窝等作为盖板材料,但这些材料价格较高,一时难以推广应用。
真空管集热器
为了减少平板集热器的热损,提高集热温度,国际上70年代研制成功真空集热管,其吸热体被封闭在高真空的玻璃真空管内,大大提高了热性能。将若干支真空集热管组装在一起,即构成真空管集热器,为了增加太阳光的采集量,有的在真空集热管的背部还加装了反光板。
真空集热管大体可分为全玻璃真空集热管,玻璃-U型管真空集热管,玻璃-金属热管真空集热管,直通式真空集热管和贮热式真空集热管。最近,我国还研制成全玻璃热管真空集热管和新型全玻璃直通式真空集 热管。
我国已经建立了拥有自主知识产权的现代化全玻璃真空集热管的产业,用于生产集热管的磁控溅射镀膜机在百台以上,产品质量达世 界先进水平,产量雄居世界首位。我国自80年代中期开始研制热管真空集热管,经过十几年的努力,攻克了热压封等许多技术难关,建立了拥有全部知识产权的热管真空管生产基地,产品质量达到世界先进水平,生产能力居世界首位。
真空管平板集热器
它是将单根真空管装配在复合抛物面反射镜的底面,兼有平板和固定式聚光的特点,它能吸收太阳光的直射和80%的散射。
3.1.1.2聚光集热器
聚光集热器通常由聚光器、吸收器和跟踪系统三部分组成。其工作原理是,自然阳光经聚光器聚焦到吸收器上,并加热吸收器内流动的集热介质,跟踪系统则根据太阳的方位随时调节聚光器的位置,以保证聚光器的开口面与人射太阳辐射总是互相垂直的。
在反射式聚光集热器中应用较多的是旋转抛物面镜聚光集热器(点聚焦)和槽形抛物面镜聚光集热器 (线聚焦)。前者可以获得高温,但要进行二维跟踪;后者可以获得中温,只要进行一维跟踪。这两种聚光集热 器在本世纪初就有应用,几十年来进行了许多改进,如提高反射面加工精度,研制高反射材料,开发高可靠性 跟踪机构等,现在这两种抛物面镜聚光集热器完全能满足各种中、高温太阳能利用的要求,但由于造价高,限制了它们的广泛应用。
3.1.2 太阳能热水器
基本原理:通过集热,促使管内水温高于水箱水温,热水比冷水轻,形成对流,最终使水箱中的温度达到使用所需的温度。
太阳能热水器通常由平板集热器、蓄热水箱和连接管道组成。按照流体流动的方式分类,可将太阳能热水器分成三大类:闷晒式、直流式和循环式。
3.1.3 太阳能采暖
太阳能采暖可以分为主动式和被动式两大类。主动式是利用太阳能集热器和相应的蓄热装置作为热源来代替常规热水(或热风)采暖系统中的锅炉。被动式则是依靠建筑物结构本身充分利用太阳能来达到采暖的目的,因此它又称为被动式太阳房。
被动式太阳房构造简单,取材方便,造价便宜,无需维修,有自然的 舒适感,特别适合发展中国家的广大农村。
主动式太阳房利用集热器产生的热水采暖,结构简单,蓄热器置于室外,室内又是由地板供暖,故不占用室内居住面积是这种系统的一大优点。
3.1.4 太阳能干燥
太阳能干燥按干燥器(或干燥室)获得能量的方式可分为:
1.集热器型干燥器
2.温室型干燥器
3.集热器—温室型干燥器
实际中还有集热器与常规能源、集热器与储热装置、集热器与热泵等各种组合式太阳能干燥装置。
集热器型干燥器是利用太阳能空气集热器,先把空气加热到预定温度后再送入干燥室,干燥室视干燥物品的类型多种多样,如箱式、窑式、固定床式或流动床式等。
温室型干燥器其温室就是干燥室,它直接接受太阳的辐射能。
集热器—温室型干燥器则是上述两种形式的结合。其温室顶部为玻璃盖板,待干燥物品放在温室中的料盘上,它既直接接受太阳辐射加热,又依靠来自空气集热器的热空气加热。
属于光热转化的还有:太阳能海水淡化、太阳能制冷和空调、太阳能热动力发电、太阳坑发电技术、太阳能热推进等。
3.2 光-电转换
原理是根据光电效应,利用太阳能直接转化为电能。应用包括为无电场所提供电池,包括移动电源和备用电源、太阳能日用电子产品等。
世界上,1941年出现有关硅太阳电池报道,1954年研制成效率达6%的单晶硅太阳电池,1958年太阳电池应用于卫星供电。在70年代以前,由于太阳电池效率低,售价昂贵,主要应用在空间。70年代以后,对太阳电池材料、结构和工艺进行了广泛研究,在提高效率和降低成本方面取得较大进展。
目前,世界上太阳电他的实验室效率最高水平为:单晶硅电池24%(100px2),多晶硅电池18.6%(100px2), InGaP/GaAs双结电池30.28%(AM1),非晶硅电池14.5%(初始)、12.8(稳定),碲化镉电池15.8%, 硅带电池14.6%,二氧化钛有机纳米电池10.96%。
我国于1958年开始太阳电池的研究,40多年来取得不少成果。目前,我国太阳电他的实验室效率最高水平为:单晶硅电池20.4%(50px×50px),多晶硅电池14.5%(50px×50px)、12%(250px×250px),GaAs电池 20.1%(lcm×cm),GaAs/Ge电池19.5%(AM0),CulnSe电池9%(lcm×25px),多晶硅薄膜电池13.6% (lcm×25px,非活性硅衬底),非晶硅电池8.6%(250px×250px)、7.9%(500px×500px)、6.2%(750px×750px), 二氧化钛纳米有机电池10%(25px×25px)。
由于各种不同材料制成的太阳电池所吸收的太阳光谱是不同的,因此将不同材料的电池串联起来,就可以充分利用太阳光谱的能量,大大提高太阳电池的效率,因此叠层串联电池的研究已引起世界各国的重视,成为最有前途的太阳电池。
太阳电池重量轻,无活动部件,使用安全。单位质量输出功率大,即可作小型电源,又可组合成大型电站。目前其应用已从航天领域走向各行各业,走向千家万户,太阳能汽车,太阳能游艇,太阳能自行车,太阳能飞机都相继问世,它们中有的已进入市场。然而对人类最有吸引力的是所谓太空太阳站。
3.2.1 太阳空间电站
空间电站实际上是利用太阳能发电的卫星,这些卫星表面覆盖有太阳能电池板,能够吸收积聚大量太阳能并将其转化为电能,通过微波束将电能传送回地面。
它是由永远朝向太阳的太阳电池列阵,能把直流电转换成微波能的微波转换站,发射微波束能的列阵天线等三部分组成,通过天线以微波形式向地面输电。在地面上则要建一个面积达几十平方公里的巨型接受系统。
空间发电有两大优点:一是可以充分利用太阳能,同时又不会污染环境,二是 不用架设输电线路,可直接向空中的飞船和飞机提供电力,也可向边远的山区、沙漠和孤岛送电。科学家预测,一旦建成空间电站,人类可以不断获得能源,地球能源利用将产生革命性变化。
问题:一是空间运输成本问题,按推测,至少空间运输成本要降低99%才有可能;二是能量转换的效率问题。
3.2.2 太阳能发电系统
太阳能电源是由太阳能电池发电,经蓄电池贮能,从而给负载供电的一种新型电源,广泛应用于微波通讯、基站、电台、野外活动、高速公路、也可为无电山区、村庄、海岛提供电力。 有以下好处:
1.不必拉设电线,不必挖开马路,安装使用方便;
2.一次性投资,可保证二十年不间断供电(蓄电池一般为5年需更换);
3.免维护,无任何污染。
太阳能电源可分为直流供电系统和交直流供电系统二种。
我们预计太阳能光伏发电在不久的将来将会占据世界能源消费的重要席位,它的发展不但要替代部分常规能源,而且还将成为世界能源供应的主体。预计到2030年,可再生能源的消耗将占总能源消耗比例的30%以上,而太阳能光伏发电在世界总电力供应中的占有比也将达到10%以上;到2040年,可再生能源消耗将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源消耗将占总能耗的80%以上,太阳能发电将占到60%以上。以上这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域所占有的重要地位。根据《可再生能源中长期发展规划》报道,到2020年,我国将力争使太阳能发电装机容量达到1.8GW(百万千瓦),到2050年将达到600GW(百万千瓦)。预计到2050年,我国可再生能源的电力装机将占全国总电力装机容量的25%,其中光伏发电装机将占到5%。未来十几年,将是我国太阳能光伏产业发展继续迅猛的一个阶段。
3.3 光-化学能转化
这种转换技术包括半导体电极产生电而电解水产生氢,利用氢氧化钙或金属氢化物热分解储能等形式。太阳能制氢问题解决了,才有真正意义上的氢能利用(包括燃料电池),这将引起时代的变革。
正在研究的太阳能制氢。有以下几种方式:
1)太阳能电解水制氢。电解水制氢是目前应用较广且比较成熟的方法,效率较高(75%-85%),但耗电大,用常规电制氢,从能量利用而言得不偿失。所以,只有当太阳能发电的成本大幅度下降后,才能实现大规模电解水制氢。
2)太阳能热分解水制氢 。将水或水蒸汽加热到3000K以上,水中的氢和氧便能分解。这种方法制氢效率高,但需要高倍聚光器才能获得如此高的温度,一般不采用这种方法制氢。
3)太阳能热化学循环制氢。为了降低太阳能直接热分解水制氢要求的高温,发展了一种热化学循环制氢方法,即在水中加入一种或几种中间物,然后加热到较低温度,经历不同的反应阶段,最终将水分解成氢和氧,而中间物不消耗,可循环使用。热化学循环分解的温度大致为900-1200K,这是普通旋转抛物面镜聚光器比较容易达到的温度,其分解水的效率在17.5%-75.5%。存在的主要问题是中间物的还原,即使按99.9%-99. 99%还原,也还要作0.1%-0.01%的补充,这将影响氢的价格,并造成环境污染。
4)太阳能光化学分解水制氢 。这一制氢过程与上述热化学循环制氢有相似之处,在水中添加某种光敏物质作催化剂,增加对阳光中长波光能的吸收,利用光化学反应制氢。日本有人利用碘对光的敏感性,设计了一套包括光化学、热电反应的综合制氢流程,每小时可产氢97升,效率达10%左右。
5)太阳能光电化学电池分解水制氢。1972年,日本本多健一等人利用n型二氧化钛半导体电极作阳极,而以铂黑作阴极,制成太阳能光电化学电池,在太阳光照射下,阴极产生氢气,阳极产生氧气,两电极用导线连接便有电流通过,即光电化学电池在太阳光的照射下同时实现了分解水制氢、制氧和获得电能。这一实验结果引起世界各国科学家高度重视,认为是太阳能技术上的一次突破。但是,光电化学电他制氢效率很低,仅0.4%,只能吸收太阳光中的紫外光和近紫外光,且电极易受腐蚀,性能不稳定,所以至今尚未达到实用要求。
6)太阳光络合催化分解水制氢。从1972年以来,科学家发现三联毗啶钉络合物的激发态具有电子转移能力,并从络合催化电荷转移反应,提出利用这一过程进行光解水制氢。这种络合物是一种催化剂,它的作用是吸收光能、产生电荷分离、电荷转移和集结,并通过一系列偶联过程,最终使水分解为氢和氧。络合催化分解水制氢尚不成熟,研究工作正在继续进行。
7)生物光合作用制氢。40多年前发现绿藻在无氧条件下,经太阳光照射可以放出氢气;十多年前又发现,兰绿藻等许多藻类在无氧环境中适应一段时间,在一定条件下都有光合放氢作用。目前,由于对光合作用和藻类放氢机理了解还不够,藻类放氢的效率很低,要实现工程化产氢还有相当大的距离。据估计,如藻类光合作用产氢效率提高到10%,则每天每平方米藻类可产氢9克分子,用5万平方公里接受的太阳能,通过光合放氢工程即可满足美国的全部燃料需要。
3.4 太阳能-生物质能转换
太阳能-机械能转换。 20世纪初,俄国物理学家实验证明光具有压力。20年代,前苏联物理学家提出,利用在宇宙空间中巨大的太阳帆,在阳光的压力作用下可推动宇宙飞船前进,将太阳能直接转换成机械能。科学家估计,在未来10~20年内,太阳帆设想可以实现。通常,太阳能转换为机械能,需要通过中间过程进行间接转换。
3.5 太阳能利用中的污染
太阳能电池在使用过程中确实具有无排放,无噪音,无能耗的清洁能源称号,但当今主流却忽略了太阳能电池光鲜表面背后生产过程中的高污染、高能耗的问题。
一、高污染
主要是生产硅过程中带来的四氢化硅污染和其它易燃易爆有毒气体污染和蓄电池带来的污染。
现太阳能电池90%为晶体硅电池,其原材料为多晶硅,由金属硅(工业硅)提纯而来,目前国内均采用化学法(改良西门子法):先将金属硅转变为三氯氢硅,再进行分馏和精馏提纯,得到高纯度的三氯氢硅 (具有毒性、腐蚀性和易爆炸) 后,最终由氢气还原而成;这一过程中只有约25%的三氯氢硅传化成多晶硅,其余基本直接排放;而污染最严重的,则是在还原过程中产生的副产品——四氯化硅(一种腐蚀性极强、难以保存的有毒液体,具有急毒性。由于四氯化硅不能自然降解,如果将四氯化硅倾倒或掩埋,水体将会受到严重污染,土地会变成不毛之地)。这还不包括大量氯气等其它易燃易爆有毒气体。
每生产1KW太阳能电池板需耗费10Kg多晶硅,产生80Kg以上四氯化硅。而国内能通过氢化还原闭环工艺循环减小四氯化硅排放的仅有一家;而即使通过氢化还原闭环工艺循环,四氯化硅的排放仍到达50%;四氯化硅虽然也是化工原料,但下游的化工厂消化十分有限。国内绝大多数多晶硅生产厂家的四氯化硅少部分以低价卖给下游厂家,一部分存储,一部分则偷偷掩埋。
这还不包括硅片后期处理的其它辅料。如制绒过程中用到的各种强酸强碱溶液、扩散使用的三氯氧磷、PECVD中使用的硅烷等,这些辅材的消耗不比主材料少。
由于太阳电池具有时效性,只有阳光照射才会产生电能;所以必须用蓄电池在有阳光时蓄电,无阳光时维持供电。而蓄电池又以铅酸蓄电池为主,其污染程度是相当大的。
二、高能耗
硅石冶炼为金属硅、金属硅提纯为多晶硅、多晶硅片处理需要耗费大量的电能,主要集中在硅石冶炼、多晶硅的铸锭和扩散这几个流程;每生产1KW太阳能电池板需要耗费5800-6000度电(国内平均数)。我们可以这样计算:按平均光照时间4小时/天,太阳能电池是寿命为15至20年(按20年),1KW太阳能电池总的发电量为4x365x20=29200KW• h;与耗掉的6000度电相比,其电能再生比只有4.87,这还没有算上光照效率以及逆变电源的损耗和控制电路的损耗;远远低于水电和风电。如果再加上超白玻璃、铝合金、钢材、电缆等辅件,其电能再生比是相当低的。
更大的问题是现国内生产的太阳能电池板90%以上用于出口,他国享受清洁能源,而我国却饱受能耗和污染之苦。
写在最后
据有关部门对2050年各种一次能源在世界能源构成中所占的比例预测结果显示,其构成为:石油0,天然气13%,煤20%,核能10%,水电5%,太阳能(含风能、生物质能)50%,其它2%,以太阳能为代表的新能源与可再生能源将在可持续发展中发挥重要作用。
中国是世界上最大的煤炭生产国和消费国,煤炭约占商品能源消费结构的76%,已成为中国大气污染的主要来源。大力开发新能源和可再生能源的利用技术将成为减少环境污染的重要措施。能源问题是世界性的,向新能源过渡的时期迟早要到来。从长远看,太阳能利用技术和装置的大量应用,也必然可以制约矿物能源价格的上涨。
参考文献
1、网络http://ke..com/view/21294.htm
2、太阳能干燥技术概况及应用前景张璧光
3、太阳能利用与可持续发展姚伟
4、太阳能热泵系统简介禚 静
5、我国太阳能利用进展陆维德 罗振涛
6、我国太阳能资源利用区划王炳忠
7、太阳能发电尚无经济可行性葛伟民

❸ 不锈钢.马钢 .H型钢. 怎么进行区别.具体方法是什么

不锈钢是指在空气、水、盐的水溶液、酸以及其他腐蚀介质中具有高度化学稳定性的钢种。从化学成分来看,不锈钢中含铬量都较高。由于在大气条件眄,钢中含铬量大约超过12%时,基本上不会生锈,因此习惯上将含铬量最少为12%的钢称为不锈钢。其中,腐蚀速度<0.01 mm/年者为完全耐腐蚀钢,速度<0.1 mm/年者为耐蚀钢。
http://www.mysteel.com:8080/servlet/Resource.Search?catalog=不锈钢

马钢的H型钢以其力学和使用性能优良,高强度和高韧性的经济断面,制造及使用过程中的无污染和可再生,节能、高效、抗震、安全、环保,成为大型建筑用材和钢结构用材的首选,被广泛应用于市政工程、电力、石化、冶金、交通运输、工业厂房等领域。据统计,马钢热轧H型钢生产线从1998年建成至去年,已累计生产高品质热轧H型钢480万吨,其中出口85万吨。2002年至2005年,马钢热轧H型钢累计实现利润23亿元、创汇16554万美元,高品质专用H型钢国内市场占有率达到100%。
http://www.mysteel.com:8080/servlet/Resource.Search?catalog=H型钢

H型钢是由工字型钢发展而成的一种断面力学性能更为优良的经济型断面钢材,因其断面与英文字母“H”相同而得名。热轧H型钢的特点如下:
1、翼缘宽、侧向刚度大、抗弯能力强。
2、翼缘两表面相互平行使得连接、加工、安装简便。
3、与焊接工字钢相比,成本低、精度高、残余应力小,无需昂贵的焊接材料和焊缝检测,节约钢结构制作成本。
4、相同的截面负荷下,热轧H钢结构比传统钢结构自重减轻15%-20%。
5、与砼结构相比,热轧H钢结构可增大使用面积,减轻结构自重。
6、H型钢可以加工成T型钢、蜂窝梁,可经组合成各种截面形式,极大满足工程设计与制作要求。

=========

不锈钢
不锈钢是具有60年发展历程的现代材料

自本世纪初发明不锈钢以来,不锈钢就把现代材料的形象和建筑应用中的卓越声誉集于一身,使其竞争对手羡慕不已。

只要钢种选择的正确,加工适当,保养合适,不锈钢不会产生腐蚀、点蚀、锈蚀或磨损。不锈钢还是建筑用金属材料中强度最高的材料之一。由于不锈钢具有良好的耐腐蚀性,所以它能使结构部件永久地保持工程设计的完整性。含铬不锈钢还集机械强度和高延伸性于一身,易于部件的加工制造,可满足建筑师和结构设计人员的需要。

在建筑、大楼和结构的行业中,不锈钢成功的关键是其具有良好的耐腐蚀性能。

不锈钢为什么耐腐蚀?

所有金属都和大气中的氧气进行反应,在表面形成氧化膜。不幸的是,在普通碳钢上形成的氧化铁继续进行氧化,使锈蚀不断扩大,最终形成孔洞。可以利用油漆或耐氧化的金属(例如,锌,镍和铬)进行电镀来保证碳钢表面,但是,正如人们所知道的那样,这种保护仅是一种薄膜。如果保护层被破坏,下面的钢便开始锈蚀。

不锈钢的耐腐蚀性取决于铬,但是因为铬是钢的组成部分之一,所以保护方法不尽相同。

在铬的添加量达到10.5%时,钢的耐大气腐蚀性能显著增加,但铬含量更高时,尽管仍可提高耐腐蚀性,但不明显。原因是用铬对钢进行合金化处理时,把表面氧化物的类型改变成了类似于纯铬金属上形成的表面氧化物。这种紧密粘附的富铬氧化物保护表面,防止进一步地氧化。这种氧化层极薄,透过它可以看到钢表面的自然光泽,使不锈钢具有独特的表面。而且,如果损坏了表层,所暴露出的钢表面会和大气反应进行自我修理,重新形成这种"钝化膜",继续起保护作用。

因此,所有的不锈钢都具有一种共同的特性,即铬含量均在10.5%以上。

不锈钢的类型

"不锈钢"一词不仅仅是单纯指一种不锈钢,而是表示一百多种工业不锈钢,所开发的每种不锈钢都在其特定的应用领域具有良好的性能。成功的关键首先是要弄清用途,然后再确定正确的钢种。有关不锈钢的进一步详细情况可参见由NiDI编制的"不锈钢指南"软盘。

幸而和建筑构造应用领域有关的钢种通常只有六种。它们都含有17~22%的铬,较好的钢种还含有镍。添加钼可进一步改善大气腐蚀性,特别是耐含氯化物大气的腐蚀。

耐大气腐蚀

经验表明,大气的腐蚀程度因地域而异。为便于说明,建议把地域分成四类,即:乡村,城市,工业区和沿海地区。

乡村是基本上无污染的区域。该区人口密度低,只有无污染的工业。

城市为典型的居住、商业和轻工业区,该区内有轻度污染,例如交通污染。

工业区为重工业造成大气污染的区域。污染可能是由于燃油所形成的气体,例如硫和氮的氧化物,或者是化工厂或加工厂释放的其它气体。空气中悬游的颗粒,像钢铁生产过程中产生的灰尘或氧化铁的沉积也会使腐蚀增加。

沿海地区通常指的是距海边一英里以内的区域。但是,海洋大气可以向内陆纵深蔓延,在海岛上更是如此,盛行风来自海洋,而且气候恶劣。例如,英国气候条件就是如此,所以整个国家都属于沿海区域。如果风中夹杂着海洋雾气,特别是由于蒸发造成盐沉积集聚,再加上雨水少,不经常被雨水冲刷,沿海区域的条件就更加不利。如果还有工业污染的话,腐蚀性就更大。

美国、英国、法国、意大利、瑞典和澳大利亚所进行的研究工作已经确定了这些区域对各种不锈钢耐大气腐蚀的影响。有关内容在NiIDI出版的《建筑师便览》中作了简单介绍,该书中的表可以帮助设计人员为各种区域选择成本效益最好的不锈钢。

在进行选择时,重要的是确定是否还有当地的因素影响使用现场环境。例如,不锈钢用在工厂烟囱的下方,用在空调排气挡板附近或废钢场附近,会存在非一般的条件。

维修及清理

和其它曝露于大气中的材料一样,不锈钢也会脏。今后的讲座将分析影响维修及清理成本的设计因素。但是,在雨水冲刷,人工冲洗和已脏表面之间还存在着一种相互关系。

通过把相同的板条直接放在大气中和放在有棚的地方确定了雨水冲刷的效果。人工冲洗的效果是通过人工用海绵沾上肥皂水每隔六个月擦洗每块板条的右边来确定的。结果发现,与放在有棚的地方和不被冲洗的地方的板条相比,通过雨水冲刷和人工擦洗去除表面的灰尘和淤积对表面情况有良好的作用。而且还发现,表面加工的状况也有影响,表面平滑的板条比表面粗糙的板条效果要好。

因此洗刷的间隔时间受多种因素影响,主要的影响因素是所要求的审美标准。虽然许多不锈钢幕墙仅仅是在擦玻璃时才进行冲洗,但是,一般来讲,用于外部的不锈钢每年洗刷两次。

典型用途

大多数的使用要求是长期保持建筑物的原有外貌。在确定要选用的不锈钢类型时,主要考虑的是所要求的审美标准、所在地大气的腐蚀性以及要采用的清理制度。

然而,其它应用越来越多的只是寻求结构的完整性或不透水性。例如,工业建筑的屋顶和侧墙。在这些应用中,物主的建造成本可能比审美更为重要,表面不很干净也可以。

在干燥的室内环境中使用430不锈钢效果相当好。但是,在乡村和城市要想在户外保持其外观,就需经常进行清洗。在污染严重的工业区和沿海地区,表面会非常脏,甚至产生锈蚀。但要获得户外环境中的审美效果,就需采用含镍不锈钢。所以,304不锈钢广泛用于幕墙、侧墙、屋顶及其它建筑用途,但在侵蚀性严重的工业或海洋大气中,最好采用316不锈钢。

现在,人们已充分认识到了在结构应用中使用不锈钢的优越性。有几种设计准则中包括了304和316不锈钢。因为"双相"不锈钢2205已把良好的耐大气腐蚀性能和高抗拉强度及弹限强度融为一体,所以,欧洲准则中也包括了这种钢。

产品形状

实际上,不锈钢是以全标准的金属形状和尺寸生产制造的,而且还有许多特殊形状。最常用的产品是用薄板和带钢制成的,也用中厚板生产特殊产品,例如,生产热轧结构型钢和挤压结构型钢。而且还有圆型、椭圆型、方型、矩型和六角型焊管无缝钢管及其它形式的产品,包括型材、棒材、线材和铸件。

表面状态

正如后面将谈到的,为了满足建筑师们美学的要求,已开发出了多种不同的商用表面加工。例如,表面可以是高反射的或者无光泽的;可以是光面的、抛光的或压花的;可以是着色的、彩色的、电镀的或者在不锈钢表面蚀刻有图案,以满足设计人员对外观的各种要求。

保持表面状态是容易的。只需偶尔进行冲洗就能去除灰尘。由于耐腐蚀性良好,也可以容易地去除表面的涂写污染或类似的其它表面污染。

设计

六十多年以来,建筑师们一直选用不锈钢来建造成本效益好的永久性建筑物。现有的许多建筑物充分说明了这种选择的正确性。有些是非常具有观赏性的,如纽约市的Chrysler大厦。但在许多其它应用中,不锈钢所起的作用不是那么引人注目,可是在建筑物的美学和性能方面却起着重要作用。例如,由于不锈钢比其它相同厚度的金属材料更具有耐磨性和耐压痕性,所以在人口流动量大的地方修建人行道时,它是设计人员的首选材料。

不锈钢用作建造新的建筑物和用来修复历史名胜古迹的结构材料已有70多年了。早期的设计是按照基本原则进行计算的。今天,设计规范,例如,美国土木工程师学会的标准ANSI/ASCE-8-90"冷成型不锈钢结构件设计规范"和NiDI与Euro Inox联合出版的"结构不锈钢设计手册"已简化了使用寿命长,完整性好的建筑用结构件的设计。

未来展望

由于不锈钢已具备建筑材料所要求的许多理想性能,它在金属中可以说是独一无二的,而其发展仍在继续。为使不锈钢在传统的应用中性能更好,一直在改进现有的类型,而且,为了满足高级建筑应用的严格要求,正在开发新的不锈钢。由于生产效率不断提高,质量不断改进,不锈钢已成为建筑师们选择的最具有成本效益的材料之一。

不锈钢集性能、外观和使用特性于一身,所以不锈钢仍将是世界上最佳的建筑材料之一。

不锈钢的标识方法
钢的编号和表示方法
①用国际化学元素符号和本国的符号来表示化学成份,用阿拉伯字母来表示成份含量:
如:中国、俄国 12CrNi3A
②用固定位数数字来表示钢类系列或数字;如:美国、日本、300系、400系、200系;
③用拉丁字母和顺序组成序号,只表示用途。
我国的编号规则
①采用元素符号
②用途、汉语拼音,平炉钢:P、 沸腾钢:F、 镇静钢:B、甲类钢:A、T8:特8、
GCr15:滚珠
◆合结钢、弹簧钢,如:20CrMnTi 60SiMn、(用万分之几表示C含量)
◆不锈钢、合金工具钢(用千分之几表示C含量),如:1Cr18Ni9 千分之一(即
0.1%C),不锈 C≤0.08% 如0Cr18Ni9,超低碳C≤0.03% 如0Cr17Ni13Mo
国际不锈钢标示方法
美国钢铁学会是用三位数字来标示各种标准级的可锻不锈钢的。其中:
①奥氏体型不锈钢用200和300系列的数字标示,
②铁素体和马氏体型不锈钢用400系列的数字表示。例如,某些较普通的奥氏体不锈钢
是以201、 304、 316以及310为标记,
③铁素体不锈钢是以430和446为标记,马氏体不锈钢 是以410、420以及440C为标
记,双相(奥氏体-铁素体),
④不锈钢、沉淀硬化不锈钢以及含铁量低于50%的高合金通常是采用专利名称或商标命名。
4).标准的分类和分级
4-1分级:
①国家标准GB
②行业标准YB
③地方标准
④企业标准Q/CB
4-2 分类:
①产品标准
②包装标准
③方法标准
④基础标准
4-3 标准水平(分三级):
Y级:国际先进水平
I级:国际一般水平
H级:国内先进水平
4-4国标
GB1220-84 不锈棒材(I级)
GB4241-84 不锈焊接盘园(H级)
GB4356-84 不锈焊接盘园(I级)
GB1270-80 不锈管材(I级)
GB12771-91 不锈焊管(Y级)
GB3280-84 不锈冷板(I级)
GB4237-84 不锈热板(I级)
GB4239-91 不锈冷带(I级)

阅读全文

与海岛上什么钢材不怕腐蚀相关的资料

热点内容
左腿胫骨骨折取钢板后多久可以下地 浏览:941
ai如何在扇形中进行无缝接 浏览:333
钢铁公司属于什么行业 浏览:788
摩羯座和什么星座是天衣无缝的闺蜜 浏览:105
钢材重量mt是什么意思 浏览:888
方管屏风弯 浏览:59
铝合金怎么悍接 浏览:655
超声波模具在哪里 浏览:502
儿童漏斗胸里面的钢板时间久了会怎么样 浏览:209
06国标钢筋多少钱 浏览:189
铅合金和水泥地用什么防水 浏览:283
耗能元件应采用什么样的钢材 浏览:915
成都无缝钢管厂为什么倒闭 浏览:46
钢筋接头的设置规范有哪些 浏览:509
锁骨拆钢板多久能出院 浏览:863
钛合金项链有什么办法分离 浏览:590
地下沟渠传统结构焊管机轴承供应 浏览:681
钢管怎么做直角弯头 浏览:239
钢铁是怎么炼成的1000字内容 浏览:783
在天衣无缝中缝作什么词 浏览:356