导航:首页 > 钢材市场 > x60钢材用什么焊材焊接

x60钢材用什么焊材焊接

发布时间:2024-10-11 03:26:14

⑴ 管道的管道前景

当流体的流量已知时,管径的大小取决于允许的流速或允许的摩擦阻力(压力降)。流速大时管径小,但压力降值增大。因此,流速大时可以节省管道基建投资,但泵和压缩机等动力设备的运行能耗费用增大。此外,如果流速过大,还有可能带来一些其他不利的因素。因此管径应根据建设投资、运行费用和其他技术因素综合考虑决定。
管子、管子联接件、阀门和设备上的进出接管间的联接方法,由流体的性质、压力和温度以及管子的材质、尺寸和安装场所等因素决定,主要有螺纹联接、法兰联接、承插联接和焊接等四种方法。
螺纹联接主要适用于小直径管道。联接时,一般要在螺纹联接部分缠上氟塑料密封带,或涂上厚漆、绕上麻丝等密封材料,以防止泄漏。在1.6兆帕以上压力时,一般在管子端面加垫片密封。这种联接方法简单,可以拆卸重装,但须在管道的适当地方安装活接头,以便于拆装。
法兰联接适用的管道直径范围较大。联接时根据流体的性质、压力和温度选用不同的法兰和密封垫片,利用螺栓夹紧垫片保持密封,在需要经常拆装的管段处和管道与设备相联接的地方,大都采用法兰联接。
承插联接主要用于铸铁管、混凝土管、陶土管及其联接件之间的联接,只适用于在低压常温条件下工作的给水、排水和煤气管道。联接时,一般在承插口的槽内先填入麻丝、棉线或石棉绳,然后再用石棉水泥或铅等材料填实,还可在承插口内填入橡胶密封环,使其具有较好的柔性,容许管子有少量的移动。
焊接联接的强度和密封性最好,适用于各种管道,省工省料,但拆卸时必须切断管子和管子联接件。
城市里的给水、排水、供热、供煤气的管道干线和长距离的输油、气管道大多敷设在地下,而工厂里的工艺管道为便于操作和维修,多敷设在地上。管道的通行、支承、坡度与排液排气、补偿、保温与加热、防腐与清洗、识别与涂漆和安全等,无论对于地上敷设还是地下敷设都是重要的问题。
地面上的管道应尽量避免与道路、铁路和航道交叉。在不能避免交叉时,交叉处跨越的高度也应能使行人和车船安全通过。地下的管道一般沿道路敷设,各种管道之间保持适当的距离,以便安装和维修;供热管道的表面有保温层,敷设在地沟或保护管内,应避免被土压坏和使管子能膨胀移动。
管道可能承受许多种外力的作用,包括本身的重量、流体作用在管端的推力、风雪载荷、土壤压力、热胀冷缩引起的热应力、振动载荷和地震灾害等。为了保证管道的强度和刚度,必须设置各种支(吊)架,如活动支架、固定支架、导向支架和弹簧支架等。支架的设置根据管道的直径、材质、管子壁厚和载荷等条件决定。固定支架用来分段控制管道的热伸长,使膨胀节均匀工作;导向支架使管子仅作轴向移动,
为了排除凝结水,蒸汽和其他含水的气体管道应有一定的坡度,一般不小于千分之二。对于利用重力流动的地下排水管道,坡度不小于千分之五。蒸汽或其他含水的气体管道在最低点设置排水管或疏水阀,某些气体管道还设有气水分离器,以便及时排去水液,防止管内产生水击和阻碍气体流动。给水或其他液体管道在最高点设有排气装置,排除积存在管道内的空气或其他气体,以防止气阻造成运行失常。
管道如不能自由地伸缩,就会产生巨大的附加应力。因此,在温度变化较大的管道和需要有自由位移的常温管道上,需要设置膨胀节,使管道的伸缩得到补偿而消除附加应力的影响。
对于蒸汽管道、高温管道、低温管道以及有防烫、防冻要求的管道,需要用保温材料包覆在管道外面,防止管内热(冷)量的损失或产生冻结。对于某些高凝固点的液体管道,为防止液体太粘或凝固而影响输送,还需要加热和保温。常用的保温材料有水泥珍珠岩、玻璃棉、岩棉和石棉硅藻土等。
为防止土壤的侵蚀,地下金属管道表面应涂防锈漆或焦油、沥青等防腐涂料,或用浸渍沥青的玻璃布和麻布等包覆。埋在腐蚀性较强的低电阻土壤中的管道须设置阴极保护装置,防止腐蚀。地面上的钢铁管道为防止大气腐蚀,多在表面上涂覆以各种防锈漆。
各种管道在使用前都应清洗干净,某些管道还应定期清洗内部。为了清洗方便,在管道上设置有过滤器或吹洗清扫孔。在长距离输送石油和天然气的管道上,须用清扫器定期清除管内积存的污物,为此要设置专用的发送和接收清扫器的装置。
当管道种类较多时,为了便于操作和维修,在管道表面上涂以规定颜色的油漆,以资识别。例如,蒸汽管道用红色,压缩空气管道用浅蓝色等。
为了保证管道安全运行和发生事故时及时制止事故扩大,除在管道上装设检测控制仪表和安全阀外,对某些重要管道还采取特殊安全措施,如在煤气管道和长距离输送石油和天然气的管道上装设事故泄压阀或紧急截断阀。它们在发生灾害性事故时能自动及时地停止输送,以减少灾害损失。 1.压力管道金属材料的特点
压力管道涉及各行各业,对它的基本要求是“安全与使用”,安全为了使用,使用必须安全,使用还涉及经济问题,即投资省、使用年限长,这当然与很多因素有关。而材料是工程的基础,首先要认识压力管道金属材料的特殊要求。压力管道除承受载荷外,由于处在不同的环境、温度和介质下工作,还承受着特殊的考验。
(1)金属材料在高温下性能的变化
① 蠕变:钢材在高温下受外力作用时,随着时间的延长,缓慢而连续产生塑性变形的现象,称为蠕变。钢材蠕变特征与温度和应力有很大关系。温度升高或应力增大,蠕变速度加快。例如,碳素钢工作温度超过300~350℃,合金钢工作温度超过300~400℃就会有蠕变。产生蠕变所需的应力低于试验温度钢材的屈服强度。因此,对于高温下长期工作的锅炉、蒸汽管道、压力容器所用钢材应具有良好的抗蠕变性能,以防止因蠕变而产生大量变形导致结构破裂及造成爆炸等恶性事故。
② 球化和石墨化:在高温作用下,碳钢中的渗碳体由于获得能量将发生迁移和聚集,形成晶粒粗大的渗碳体并夹杂于铁素体中,其渗碳体会从片状逐渐转变成球状,称为球化。由于石墨强度极低,并以片状出现,使材料强度大大降低,脆性增加,称为材料的石墨化。碳钢长期工作在425℃以上环境时,就会发生石墨化,在大于475℃更明显。SH3059规定碳钢最高使用温度为425℃,GB150则规定碳钢最高使用温度为450℃。
③ 热疲劳性能 钢材如果长期冷热交替工作,那么材料内部在温差变化引起的热应力作用下,会产生微小裂纹而不断扩展,最后导致破裂。因此,在温度起伏变化工作条件下的结构、管道应考虑钢材的热疲劳性能。
④ 材料的高温氧化 金属材料在高温氧化性介质环境中(如烟道)会被氧化而产生氧化皮,容易脆落。碳钢处于570℃的高温气体中易产生氧化皮而使金属减薄。故燃气、烟道等钢管应限制在560℃下工作。
(2)金属材料在低温下的性能变化
当环境温度低于该材料的临界温度时,材料冲击韧性会急剧降低,这一临界温度称为材料的脆性转变温度。常用低温冲击韧性(冲击功)来衡量材料的低温韧性,在低温下工作的管道,必须注意其低温冲击韧性。
(3)管道在腐蚀环境下的性能变化
石油化工、船舶、海上石油平台等管道介质,很多有腐蚀性,事实证明,金属腐蚀的危害性十分普遍,而且也十分严重,腐蚀会造成直接或间接损失。例如,金属的应力腐蚀、疲劳腐蚀和晶间腐蚀往往会造成灾难性重大事故,金属腐蚀会造成大量的金属消耗,浪费大量资源。引起腐蚀的介质主要有以下几种。
① 氯化物 氯化物对碳素钢的腐蚀基本上是均匀腐蚀,并伴随氢脆发生,对不锈钢的腐蚀是点腐蚀或晶间腐蚀。防止措施可选择适宜的材料,如采用碳钢-不锈钢复合管材。
② 硫化物原油中硫化物多达250多种,对金属产生腐蚀的有硫化氢(H2S)、硫醇(R-SH)、硫醚(R-S-R)等。我国液化石油气中H2S含量高,造成容器出现裂缝,有的投产87天即发生贯穿裂纹,事后经磁粉探伤,内表面环缝共有417条裂纹,球体外表面无裂纹,所以H2S含量高引起应力腐蚀应值得重视。日本焊接学会和高压气体安全协会规定:液化石油中H2S含量应控制在100×10-6以下,而我国液化石油气中H2S含量平均为2392×10-6,高出日本20多倍。
③ 环烷酸 环烷酸是原油中带来的有机物,当温度超过220℃时,开始发生腐蚀,270~280℃时腐蚀达到最大;当温度超过400℃,原油中的环烷酸已汽化完毕。316L(00Cr17Ni14Mo2)不锈钢材料是抗环烷酸腐蚀的有效材料,常用于高温环烷酸腐蚀环境。
2. 压力管道金属材料的选用
① 满足操作条件的要求。首先应根据使用条件判断该管道是否承受压力,属于哪一类压力管道。不同类别的压力管道因其重要性各异,发生事故带来的危害程度不同,对材料的要求也不同。同时应考虑管道的使用环境和输送的介质以及介质对管体的腐蚀程度。例如插入海底的钢管桩,管体在浪溅区腐蚀速度为海底土中的6倍;潮差区腐蚀速度为海底土中的4倍。在选材及防腐蚀措施上应特别关注。
② 可加工性要求。材料应具有良好的加工性和焊接性。
③ 耐用又经济的要求 压力管道,首先应安全耐用和经济。一台设备、一批管道工程,在投资选材前,必要时进行可行性研究,即经济技术分析,拟选用的材料可制定数个方案,进行经济技术分析,有些材料初始投资略高,但是使用可靠,平时维修费用省;有的材料初始投资似乎省,但在运行中可靠性差,平时维修费用高,全寿命周期费用高。 早在1926年,美国石油学会(API)发布API-5L标准,最初只包括A25、A、B三种钢级,以后又发布了数次,见表4。表4 API发布的管线钢级
注:1972年API发布U80、U100标准,以后改为X80、X100。
2000年以前,全世界使用X70,大约在40%,X65、X60均在30%,小口径成品油管线相当数量选用X52钢级,且多为电阻焊直管(ERW钢管)。
我国冶金行业在十余年来为发展管线钢付出了极大的辛劳,目前正在全力攻关X70宽板,上海宝山钢铁公司、武汉钢铁公司等X70、X80化学成分、力学性能分别列于表5~表9。表5 武钢X80卷板性能表6 X70级钢管的力学性能表7 X70级钢管弯曲性能检测结果表8 X70级钢管的夏比冲击韧性表9 高强度输送管的夏比冲击韧性
我国在输油管线上常用的管型有螺旋埋弧焊管(SSAW)、直缝埋弧焊管(LSAW)、电阻焊管(ERW)。直径小于152mm时则选用无缝钢管。
我国20世纪60年代末至70年代,螺旋焊管厂迅速发展,原油管线几乎全部采用螺旋焊钢管,“西气东输”管线的一类地区也选用螺旋焊钢管。螺旋焊钢管的缺点是内应力大、尺寸精度差,产生缺陷的概率高。据专家分析认为,应采用“两条腿走路”的方针,一是对现有螺旋焊管厂积极进行技术改造,还是大有前途的;二是大力发展我国直缝埋弧焊管制管业。
ERW钢管具有外表光洁、尺寸精度高、价格较低等特点,在国内外已广泛应用。 我国的油气资源大部分分布在东北和西北地区,而消费市场绝大部分在东南沿海和中南部的大中城市等人口密集地区,这种产销市场的严重分离使油气产品的输送成为油气资源开发和利用的最大障碍。管输是突破这一障碍的最佳手段,与铁路运输相比,管道运输是运量大、安全性更高、更经济的油气产品输送方式,其建设投资为铁路的一半,运输成本更只有三分之一。因此,我国政府已将“加强输油气管道建设,形成管道运输网”的发展战略列入了“十五”发展规划。根据有关方面的规划,未来10年内,我国将建成14条油气输送管道,形成“两纵、两横、四枢纽、五气库”,总长超过万公里的油气管输格局。这预示着我国即将迎来油气管道建设的高峰期。
我国正在建设和计划将要建设的重点天然气管道工程有:西气东输工程,全长4176公里,总投资1200亿元,2000年9月正式开工建设,2004年全线贯通;涩宁兰输气管道工程,全长950公里,已于2000年5月开工建设,已接近完工,天然气已送到西宁;忠县至武汉输气管道工程,全长760公里,前期准备工作已获得重大进展,在建的11条隧道已有4条贯通;石家庄至涿州输气管道工程,全长202公里,已于2000年5月开工建设,已完工;石家庄至邯郸输气管道工程,全长约160公里;陕西靖边至北京输气工程复线;陕西靖边至西安输气管道工程复线;陕甘宁至呼和浩特输气工程,全长497公里;海南岛天然气管道工程,全长约270公里;山东龙口至青岛输气管道工程,全长约250公里;中俄输气管道工程,中国境内全长2000公里;广东液化天然气工程,招商引资工作已完成,计划2005年建成。在建和将建的输油管道有:兰成渝成品油管道工程,全长1207公里,已于2000年5月开工建设;中俄输油管道工程,中国境内长约700公里;中哈输油管道工程,中国境内长800公里。此外,由广东茂名至贵阳至昆明长达2000公里的成品油管线和镇海至上海、南京的原油管线也即将开工建设。除主干线之外,大规模的城市输气管网建设也要同期配套进行。
面对如此巨大的市场,如此难得的发展机遇,对管道施工技术提出了新的挑战。在同样输量的情况下,建设一条高压大口径管道比平行建几条低压小口径管道更为经济。例如一条输送压力为7.5MPa,直径1 400mm的输气管道可代替3条压力5.5MPa,直径1 000mm的管道,但前者可节省投资35%,节省钢材19%,因此,扩大管道的直径已成为管道建设的科学技术进步的标志。在一定范围内提高输送压力可以增加经济效益。以直径1 020mm的输气管道为例,操作压力从5.5MPa提高到7.5MPa,输气能力提高41%,节约材料7%,投资降低23%。计算表明,如能把输气管的工作压力从7.5MPa,进一步提高到10~12MPa,输气能力将进一步增加33~60%。美国横贯阿拉斯加的输气管道压力高达11.8MPa,输油管道达到8.3MPa,是目前操作压力最高的管道。
管径的增加和输送压力的提高,均要求管材有较高的强度。在保证可焊性和冲击韧性的前提下,管材的强度有了很大提高。由于管道敷设完全依靠焊接工艺来完成,因此焊接质量在很大程度上决定了工程质量,焊接是管道施工的关键环节。而管材、焊材、焊接工艺以及焊接设备等是影响焊接质量的关键因素。
我国在70年代初开始建设大口径长输管道,著名的“八三”管道会战建设了大庆油田至铁岭、由铁岭至大连、由铁岭至秦皇岛的输油管道,解决了困扰大庆原油外输问题。
该管道设计管径φ720mm,钢材选用16MnR,埋弧螺旋焊管,壁厚6~11mm。焊接工艺方案为:手工电弧焊方法,向上焊操作工艺;焊材选用J506、J507焊条,焊前烘烤400℃、1小时,φ3.2打底、φ4填充、盖面;焊接电源采用旋转直流弧焊机;坡口为60°V型,根部单面焊双面成型。
东北“八三”会战所建设的管道已运行了30年,至今仍在服役,证明当年的工艺方案正确,并且施工质量良好。
80年代初开始推广手工向下焊工艺,同时研制开发了纤维素型和低氢型向下焊条。与传统的向上焊工艺比较,向下焊具有速度快、质量好,节省焊材等突出优点,因此在管道环缝焊接中得到了广泛的应用。
90年代初开始推广自保护药芯焊丝半自动手工焊,有效地克服了其他焊接工艺方法野外作业抗风能力差的缺点,同时也具有焊接效率高、质量好且稳定的特点,现成为管道环缝焊接的主要方式。
管道全位置自动焊的应用已探索多年,现已有了突破性进展,成功地用西气东输管道工程,其效率、质量更是其他焊接工艺所不能比的,这标志着我国油气管道焊接技术已达到了较高水平。 2.1 管线钢的发展历史
早期的管线钢一直采用C、Mn、Si型的普通碳素钢,在冶金上侧重于性能,对化学成分没有严格的规定。自60年代开始,随着输油、气管道输送压力和管径的增大,开始采用低合金高强钢(HSLA),主要以热轧及正火状态供货。这类钢的化学成分:C≤0.2%,合金元素≤3~5%。随着管线钢的进一步发展,到60年代末70年代初,美国石油组织在API 5LX和API 5LS标准中提出了微合金控轧钢X56、X60、X65三种钢。这种钢突破了传统钢的观念,碳含量为0.1-0.14%,在钢中加入≤0.2%的Nb、V、Ti等合金元素,并通过控轧工艺使钢的力学性能得到显著改善。到1973年和1985年,API标准又相继增加了X70和X80钢,而后又开发了X100管线钢,碳含量降到0.01-0.04%,碳当量相应地降到0.35以下,真正出现了现代意义上的多元微合金化控轧控冷钢。
我国管线钢的应用和起步较晚,过去已铺设的油、气管线大部分采用Q235和16Mn钢。“六五”期间,我国开始按照API标准研制X60、X65管线钢,并成功地与进口钢管一起用于管线敷设。90年代初宝钢、武钢又相继开发了高强高韧性的X70管线钢,并在涩宁兰管道工程上得到成功应用。
2.2 管线钢的主要力学性能
管线钢的主要力学性能为强度、韧性和环境介质下的力学性能。
钢的抗拉强度和屈服强度是由钢的化学成分和轧制工艺所决定的。输气管线选材时,应选用屈服强度较高的钢种,以减少钢的用量。但并非屈服强度越高越好。屈服强度太高会降低钢的韧性。选钢种时还应考虑钢的屈服强度与抗拉强度的比例关系—屈强比,用以保证制管成型质量和焊接性能。
钢在经反复拉伸压缩后,力学性能会发生变化,强度降低,严重的降低15%,即包申格效应。在定购制管用钢板时必须考虑这一因素。可采取在该级别钢的最小屈服强度的基础上提高40-50MPa。
钢材的断裂韧性与化学成分、合金元素、热处理工艺、材料厚度和方向性有关。应尽可能降低钢中C、S、P的含量,适当添加V、Nb、Ti、Ni等合金元素,采用控制轧制、控制冷却等工艺,使钢的纯度提高,材质均匀,晶粒细化,可提高钢韧性。采取方法多为降C增Mn。
管线钢在含硫化氢的油、气环境中,因腐蚀产生的氢侵入钢内而产生氢致裂纹开裂。因此输送酸性油、气管线钢应该具有低的含硫量,进行有效的非金属夹杂物形态控制和减少显微成份偏析。管线钢的硬度值对HIC也有重要的影响,为防止钢中氢致裂纹,一般认为应将硬度控制在HV265以下。
2.3 管线钢的焊接性
随着管线钢碳当量的降低,焊接氢致裂纹敏感性降低,为避免产生裂纹所需的工艺措施减少,焊接热影响区的性能损害程度降低。但由于焊接时管线钢经历着一系列复杂的非平衡的物理化学过程,因而可能在焊接区造成缺陷,或使接头性能下降,主要是焊接裂纹问题和焊接热影响区脆化问题。
管线钢由于碳含量低,淬硬倾向减小,冷裂纹倾向降低。但随着强度级别的提高,板厚的加大,仍然具有一定的冷裂纹倾向。在现场焊接时由于常采用纤维素焊条、自保护药芯焊丝等含氢量高的焊材,线能量小,冷却速度快,会增加冷裂纹的敏感性,需要采取必要的焊接措施,如焊前预热等。
焊接热影响区脆化往往是造成管线发生断裂,诱发灾难性事故的根源。出现局部脆化主要有两个区域,即热影响区粗晶区脆化,是由于过热区的晶粒过分长大以及形成的不良组织引起的,多层焊时粗晶区再临界脆化,即前焊道的粗晶区受后续焊道的两相区的再次加热引起的。这可以通过在钢中加入一定量的Ti、Nb微合金化元素和控制焊后冷却速度获得合适的t8/5来改善韧性。
2.4 西气东输管道工程用钢管
西气东输管道工程用钢管为X70等级管线钢,规格为Φ1 016mm×14.6~26.2mm,其中螺旋焊管约占80%,直缝埋弧焊管约占20%,管线钢用量约170万吨。
X70管线钢除了含Nb、V、Ti外,还加入了少量的Ni、Cr、Cu和Mo,使铁素体的形成推迟到更低的温度,有利于形成针状铁素体和下贝氏体。因此X70管线钢本质上是一种针状铁素体型的高强、高韧性管线钢。钢管的化学成分及力学性能见表1和表2。 现场焊接的特点
由于发现和开采的油气田地处边远地区,地理、气候、地质条件恶劣,社会依托条件较差,给施工带来很多困难,尤其低温带来的麻烦最大。
现场焊接时,采用对口器进行管口组对。为了提高效率,一般是在对好的管口下放置基础梁木或土堆,在对前一个对接口进行焊接的同时,开始下一个对接准备工作。这将产生较大的附加应力。同时由于钢管热胀冷缩的影响,在碰死口时最容易因附加应力而出问题。
现场焊接位置为管水平固定或倾斜固定对接,包括平焊、立焊、仰焊、横焊等焊接位置。所以对焊工的操作技术提出了更高、更严的要求。
当今管道工业要求管道有较高的输送压力和较大的管线直径并保证其安全运行。为适应管线钢的高强化、高韧化、管径的大型化和管壁的厚壁化出现了多种焊接方法、焊接材料和焊接工艺。
管道施工焊接方法
国外管道焊接施工经历了手工焊和自动焊的发展历程。手工焊主要为纤维素焊条下向焊和低氢焊条下向焊。在管道自动焊方面,有前苏联研制的管道闪光对焊机,其在前苏联时期累计焊接大口径管道数万公里。它的显著特点就是效率高,对环境的适应能力很强。美国CRC公司研制的CRC多头气体保护管道自动焊接系统,由管端坡口机、内对口器与内焊机组合系统、外焊机三大部分组成。到目前为止,已在世界范围内累计焊接管道长度超过34000km。法国、前苏联等其他国家也都研究应用了类似的管道内外自动焊技术,此种技术方向已成为当今世界大口径管道自动焊技术主流。
我国钢质管道环缝焊接技术经历了几次大的变革,70年代采用传统焊接方法,低氢型焊条手工电弧焊上向焊技术,80年代推广手工电弧焊下向焊技术,为纤维素焊条和低氢型焊条下向焊,90年代应用自保护药芯焊丝半自动焊技术,到今天开始全面推广全位置自动焊技术。
手工电弧焊包括纤维素焊条和低氢焊条的应用。手工电弧焊上向焊技术是我国以往管道施工中的主要焊接方法,其特点为管口组对间隙较大,焊接过程中采用息弧操作法完成,每层焊层厚度较大,焊接效率低。手工电弧焊下向焊是80年代从国外引进的焊接技术,其特点为管口组对间隙小,焊接过程中采用大电流、多层、快速焊的操作方法来完成,适合于流水作业,焊接效率较高。由于每层焊层厚度较薄,通过后面焊层对前面焊层的热处理作用可提高环焊接头的韧性。手工电弧焊方法灵活简便、适应性强,其下向焊和上向焊两种方法的有机结合及纤维素焊条良好的根焊适应性在很多场合下仍是自动焊方法所不能代替的。
自保护药芯焊丝半自动焊技术是20世纪90年代开始应用到管道施工中的,主要用来填充和盖面。其特点为熔敷效率高,全位置成形好,环境适应能力强,焊工易于掌握,是管道施工的一种重要焊接工艺方法。
随着管道建设用钢管强度等级的提高,管径和壁厚的增大,在管道施工中逐渐开始应用自动焊技术。管道自动焊技术由于焊接效率高,劳动强度小,焊接过程受人为因素影响小等优势,在大口径、厚壁管道建设的应用中具有很大潜力。但我国的管道自动焊接技术正处于起步阶段,根部自动焊问题尚未解决,管端坡口整形机等配套设施尚未成熟,这些都限制了自动焊技术的大规模应用。 长期管内的油泥、锈垢固化造成原管径变小;
长期的管内淤泥沉淀产生硫化氢气体造成环境污染并易引起燃爆;
废水中的酸、碱物质易对管道壁产生腐蚀; 管道内的异物不定期的清除造成管道堵塞; 1、化学清洗:化学清洗管道是采用化学药剂,对管道进行临时的改造,用临时管道和循环泵站从管道的两头进行循环化学清洗。该技术具有灵活性强,对管道形状无要求,速度快,清洗彻底等特点。
2、高压水清洗:采用50Mpa以上的高压水射流,对管道内表面污垢进行高压水射流剥离清洗。该技术主要用于短距离管道,并且管道直径必须大于50cm以上。该技术具有速度快,成本低等特点。
3、PIG清管:PIG工业清管技术是依靠泵推动流体产生的推动力驱动PIG(清管器)在管内向前推动,将堆积在管线内的污垢排出管外,从而达到清洗的目的。该技术被广泛用于各类工艺管道、油田输油输汽管道等清洗工程,特别是对于长距离输送流体的管道清洗,具有其他技术无法替代的优势。

⑵ 天然气管道焊接焊接技术要求。

具体如下:

1、根焊打底

管道在焊接之前要使用特殊的坡口机根据要求严格规范加工出V型坡口,然后对坡口的两端进行除锈,使用外对口器管线组对,完成之后用电加热带对他预热,在他完成预热之后才能进行根焊,根焊要使用RMD,然后选择METALLOY 80N1的金属粉芯焊丝进行打底。

这样可以使根焊的焊缝均匀,从而预防焊穿。根焊焊接的时候应该注意以下几点:首先,提前对试板试焊进行测试,检查氩气里面有没有掺杂杂质;在焊接的时候要使用防风棚,以便于预防因为刮风而导致的焊接质量;

在焊接之前进行的预热必须要达到规定的温度,禁止出现焊接出现裂纹;反复检查焊接质量,及时热焊。

2、热焊和填充焊接

填充以及热焊要使用自保护药芯半自动焊接方法。采用E81T8-G 焊丝:随时清理由于底层焊接之后存留的飞溅物以及熔渣等等,尤其要注意接口处;

还要注意底层焊缝接头以及中层焊缝接头的距离不能低于0.1cm;焊缝的厚度要保持在0.3-0.5cm之间;及时发现问题、反复检查工作、及时清理残留杂质这些都要做到位。

3、盖面焊接

盖面同样使用自保护药芯半自动焊接方法,选用 E81T8-G 焊丝:焊缝的外观要光滑,颜色要尽可能的接近于管道的颜色,并且要保持过渡自然,争取做到天衣无缝,给人浑然一体的视觉感受;焊缝的宽度要大于坡口两侧大约0.2cm,高度大约是在0.15-0.25cm之间;

盖面表层出现的残留物体要及时进行处理,使用合适的方法做好盖面的防腐工作以及保温工作,只有这样才可以禁止发生侵蚀破坏的现象,从而提升焊接的质量;

在冬季施工之后,要对焊道进行保温,禁止他有裂纹出现;在焊接施工结束之后,质检人员要严格根据要求对外观进行检查,如果发现问题就要及时的进行处理。

4、记录工作

焊接管道的时候,焊接的技术人员不仅要根据需求严格遵守焊接工艺指导书实施焊接工艺,还要随时记录好相关的数据。比如说,电焊的电压、电流、每层焊缝使用的材质、焊前的预热和焊后的热处理等。

(2)x60钢材用什么焊材焊接扩展阅读:

常见焊接缺陷、形成的原因及预防措施

1、咬边缺陷:由于焊接参数选择不当,或操作方法不正确,在沿着焊道的母材部位烧熔形成的沟槽或凹陷。咬边不仅减弱了焊接接头强度,而且因应力集中容易引发裂纹。

形成原因:在最后盖面焊接时,由于操作不当,或焊接电流过大,电弧过长,在焊缝与母材交接处形成母材缺口或未填满的现象,易造成应力集中或母材强度降低。预防措施:选择正确的焊接电流和焊接速度,电弧不能拉得太长,保持运条均匀。

2、未熔合缺陷:焊接时,焊道与母材之间或焊道与焊道之间未完全熔化。形成原因:焊接速度快而焊接电流小,焊接热输入太低;电弧指向偏斜,坡口侧壁有锈垢及污物,层间清理不彻底,使得焊材与母材间未很好熔合。

预防措施:正确选择焊接工艺参数,焊接热输入,精心操作,加强层间的清理等,提高焊工操作技术水平。

3、气孔缺陷:焊接时,熔池中的气体在凝固时未能逸出而残下来所形成的空穴。形成原因:焊件表面和坡口处有油、锈、水分等污物存在,熔解在熔池的气体,在熔池冷却过程中,因气体熔解度急剧降低,来不及析出残留在固体金属内形成的。

液态铁水有气体,气体没有逸出,在焊道形成后,在焊道中有空洞,就称气孔。预防措施:加强焊前处理。焊前仔细清理焊件表面铁锈、油污、水分;按规定烘干焊条、焊剂。在天气湿度过大或下雨天,采取有效措施,防止气孔产生。

4、夹渣缺陷:焊后残留在焊缝中的熔渣。在焊缝形成过程中,焊渣未能及时浮出,夹在焊道中(操作与环境温度影响)。形成原因:焊接工艺参数不合适,使熔池温度低,冷却快,渣不易漂出;焊前清理不净或层间清理不彻底。

预防措施:选用合适的坡口角度和合理的焊接工艺参数,使熔池存在的时间不要太短。焊接操作要平稳,焊条摆动的方式要有利于熔渣上浮。仔细清理坡口边缘及焊丝表面油污。多层焊时要注意将前道焊缝的熔渣清理干净后,再焊下一道(层)焊缝。

5、未焊透缺陷:焊接时,焊接接头根部未完全熔透的现象,主要存在于焊缝根部。形成原因:主要有未留间隙或间隙过小、坡口角度过小、钝边过大,以及焊接电流过小,焊接速度过快,或焊接电压太低,以及操作问题。

但焊缝间隙过大,焊缝内道上部易产生焊瘤,内道下部易产生内凹。GB50236-98 焊接规范对内焊道、外焊道盖面的高度都有规定。焊接间隙在保证焊接质量的前提下,宜小不宜大,这样做既可以保证质量,又可提高焊接效率。

预防措施:正确选用和加工坡口尺寸,保证必须的焊接间隙,正确选用焊接电流、电压和焊接速度,认真操作,仔细地清理层间或母材边缘的氧化物和熔渣等。

⑶ 什么是气门钢

气门钢主要材质:42Cr9Si2、40Cr10Si2Mo、85Cr18Mo2N(X85)、53Cr21Mn9Ni4N(21-4N)、33Cr23Ni8Mn3N(23-8N)、GH4080A(80A)、51Cr8Si2、55Cr21Mn8Ni2N(21-2N)、50Cr21Mn9Ni4Nb2WN、61Cr21Mn10Mo1Nb1V1N、
5Cr21Mn9Ni4Nb2WN (21-4NWNb)、45Cr9Si3、GH4080A、GH4751等气阀钢,耐热钢棒材、锻件、板材、环形锻件、线材,并可根据客户要求定制。
汽车和内燃机工业的发展,推动了阀门钢的开发,最早的阀门钢是20世纪20年代的0.4C-12Cr钢。1930年开始使用8.5Cr-3Si钢。1942年英国列人标准中的牌号为En52。稍后法国提出了10Cr-2Si-1Mo钢。这样就形成了以Cr-Si为主的马氏体型阀门钢。这种钢在650℃以下有良好的热强性和抗氧化性,且较经济,各国还广泛用于低负荷的排气阀门和中负荷的进气阀门。我国标准中的牌号为4Cr9Si2、4Cr10Si2Mo。增加碳含量并加人镍、钼、钨、钒等可提高耐热性,发展为高碳马氏体型耐热钢,碳含量达0.80%~0.85%,如X80CrSiNi20(XB)、X85CrMoV193、X80CrSiMoW152等。我国研制了新钢种MF811。
中、高负荷的排气阀-般采用奥氏体型阀门钢。使用的是高碳18Cr-8Ni奥氏体钢。为了提高钢的热强性添加了钨、钼,并相应提高了镍的含量,如X45CrNiW189、14Cr-14Ni-2W-1Mo钢。在21Cr-12Ni钢中加入0.2%N进-步稳定了奥氏体并增加了钢的硬度和延缓了碳化物的集聚。用锰代替Cr-Ni钢中的镍始于1945年。1950年Jenmings发现硅含量小于0.25%显著提高了抗氧化铅腐蚀的能力。1952年美国发明了低硅的21Cr-9Mn-4Ni-N钢(21-4N),与21Cr-12NiN、14Cr-14Ni-2W-Mo相比,性能优越较经济,在汽油机排气阀门仁迅速得到广泛应用。在21-4N钢某础上添加硫改善切削性能形成了21-4NS。添加铌、钼、钨和钒,提高了高温强度、疲劳强度和耐磨性,开发了21-4WNbN,X60CrMnMoVNbN2110钢。21-4N钢硅低氮高,生产难度大,对其成分进行调整,成为21-2N,这种钢用于轻负荷排气阀更为经济。23-8N是用于柴汕机排气阀门较经济的材料,性能优于21-12N和14Cr-14Ni-2W-Mo钢,工艺性能也优于21-4N钢。美国还致力于改善阀门钢的高温疲劳强度和抗腐蚀、耐磨性的研究,开发了汽油机、柴油机两用的新型排气阀门材料VMS513,在高温下的疲劳强度比21-4N高40% [2] 。
我国阀门钢的研究生产始于20世纪50年代。在YBII 1959《耐热钢技术条件》中列入了通4Cr9Si2、4Cr10Si2Mo、4Cr14Ni14W2Mo三个阀门钢牌号。70年代开始研制21-N。80年代国产阀门钢进入全面发展阶段。引进消化了21-4WNbN,XB,21-12N,23-8N,21-2N,X85CrMoV182,X60CrMnMoVNbN2110,20-11P等

⑷ 气门用什么材料

GH4080A,沉淀硬化高温合金

GH4080A概述:

GH4080A是NI-CR基沉淀硬化型变形高温合金,使用温度小于800℃。合金主要是以加入铝、钛元素形成γ′相沉淀硬化相。合金在650~850℃范围具有良好的抗蠕变性能和抗氧化性能。该合金冷、热加工性能良好。主要产品有热轧和锻制棒、冷拉棒、热轧板、冷轧板、带材以及环形件等。

GH4080A应用概况及特性:

合金已用于制造航空发动机的转子叶片、导向叶片支座、扇形件安装环、螺栓、叶片锁板零件。此外,也用于制作汽车发动机的紧固件和叶片,以及火车用的气门和轴件。近年来,随着国内外舰船制造业的发展,该合金大量用于制造舰船发动机的阀门。

合金经700~850℃长期时效1000h后没有析出TCP相。

GH4080A执行标准:

GB/T14992 高温合金和金属间化合物高温材料的分类和牌号

HB/Z140航空用高温合金热处理工艺

WS9-7009 GH80A合金涡轮叶片用热轧棒材

WS9-7011 GH80A合金热轧、锻制及冷拉棒材

WS9-7095 GH80A合金热轧板材、冷轧薄板和带材

WS9-7156 GH80A合金 冷拔(轧)无缝管

辽新6-0051 车辆和轮船用GH80A合金热轧和锻制棒材技术条件

QJ/DT01.63018 汽轮机叶片用GH80A合金热轧和锻制棒材技术条件

QJ/DT01.63019 气阀用GH80A合金锻件技术条件

QJ/DT01.63022 柴油机气阀用GH80A合金圆棒技术条件

GH4080A对应牌号:

Nimonic 80A,UNS N07080,GH80A,W.NR 2.4952, W.NR 2.4631 ,AWS 031,NICR20TIAL

GH4080A特性:

主要特征:可沉淀硬化的合金,高温(最高815°C)伸张特性极佳。
用途举例:船舶、坦克用柴油机的排气阀主要采用GH4080A锻制而成.。GH4080A具有很高的耐热 性能,在高温下强度高,变形抗力大,增加了锻造成形的难度.适合于制造螺栓,燃烧室的排气阀。

GH4080A主要规格:

GH4080A无缝管、GH4080A钢板、GH4080A圆钢、GH4080A锻件、GH4080A法兰、GH4080A圆环、GH4080A焊管、GH4080A钢带、GH4080A直条、GH4080A丝材及配套焊材、GH4080A圆饼、GH4080A扁钢、GH4080A六角棒、GH4080A大小头、GH4080A弯头、GH4080A三通、GH4080A加工件、GH4080A螺栓螺母、GH4080A紧固件。

⑸ 下向焊的特点

在管道水平放置固定不动的情况下,焊接热源从顶部中心开始垂直向下焊接,一直到底部中心。其焊接部位的先后顺序是:平焊、立平焊、立焊、仰立焊、仰焊。下向焊焊接工艺采用纤维素下向焊焊条,这种焊条以其独特的药皮配方设计,与传统的由下向上施焊方法相比其优点主要表现在:
(1) 焊接速度快,生产效率高。因该种焊条铁水浓度低,不淌渣,比由下向上施焊提高效率 50 %。
(2) 焊接质量好,纤维素焊条焊接的焊缝根部成形饱满,电弧吹力大,穿透均匀,焊道背面成形美观,抗风能力强,适于野外作业。
(3) 减少焊接材料的消耗,与传统的由下向上焊接方法相比焊条消耗量减少 20 % -30 %。
(4) 焊接一次合格率可达90 %以上。
一. 下向焊技术应用
城市燃气管道工程施工过程中,与长输管线的野外施工不同,受到诸多外界因素限制。城市地网中,河流、公路、和频繁的地下障碍,都为施工带来很大难度。在管道铺设过程中,既有穿越工程,又有过河道明开工程,还有沉管工程等;此外,作业空间小也会增加了施工的难度。针对上述出现的问题,为保证工程质量,施焊时,根据外部环境有的管段采用分段施工,分段下管,也有的管段采用沟下组焊,围绕焊接质量从各角度加以控制。河南洛阳吉利管道焊接培训中心在长期培训中总结了这些理论方法,现在分享给大家!希望大家能掌握熟练的下向焊接工艺!
采用下向焊的焊接缝隙小,焊接速度快,使得与传统上向焊工艺相比,显得高效、节能;另外,选用的纤维素焊条,焊条电弧吹力大、抗外界干扰能力强;连续焊接,焊接接头少,焊缝成型美观;采用的多层多道焊操作工艺,使得焊缝的内在质量好,无损检测合格率高。我们洛阳吉利管道焊接中心及时开展下向焊培训业务。
1. 焊前准备:
钢管的组对及定位焊是保证焊接质量和焊缝背面成型良好的基础,管材单边坡口角度为 28 ° -32 °,钝边厚度 1.0-1.5mm ,对口间隙 1.2-2.0mm ,最大错边量不大于管外径的3 ‰,且≤2mm 。要求管道端面切口平整,不得有裂纹,且切口面与管轴线垂直,不垂直的偏差不得大于 1.5mm ;焊前分别用角磨机、电动钢丝刷将坡口两侧表面各 50mm 的油污、浮锈、水分、泥沙、气割后的熔渣、氧化皮等杂物以及坡口内侧机加工毛刺等清除干净,使坡口及两侧各大于 10mm 范围的内外表面露出金属光泽。
采用 E6010 ( AWS )、 E7010 ( AWS )纤维素焊条打底时,在包装、保管良好的情况下,可不用烘干即可施焊,否则,应进行 70 ℃ ~80 ℃烘干,保温 0.5~1h ,焊条重复烘干次数不多于两次。
定位焊缝因作为正式焊缝的一部分,通常要求焊缝长度≤ 20mm ,为利于接头,其两侧打磨成缓坡状。
2. 焊接材料
⑴纤维素立下向焊条
奥地利伯乐公司是生产管道焊条世界知名厂家,该公司多年来致力于开发和改善专门用于管道焊接的焊条,品种全、质量好,欧洲、澳洲和中东以及在我国该公司均有很大的市场,焊接X60-X70管的纤维素焊条有FOXCEL85。焊接X80管的有FOXCELMOFOXBVD100等。美国林肯公司也是生产纤维素焊条的著名厂家之一,该公司生产的相当于AWSE6010、E7010G、E8010G等焊条在国内管道施工中也占相当比例。此外,合伯乐公司生产的管道下向焊条PIPEMASTER系列, 瑞典伊萨公司生产的E6010、 E7010G焊条近年来也都参与了国内市场的竞争。
⑵实芯焊丝和药芯焊丝
实芯焊丝和药芯焊丝国外供应厂商比较多,如法国的沙福、日本神钢以及美国的合伯乐和林肯等大公司都生产管道用各种实芯焊丝和药芯焊丝。在我国管道焊接用药芯焊丝以林肯公司占的比重最大,实芯焊丝LN50、LN56、LN70,药芯焊丝OUTERSHIELD71H/81B2H以及自保护焊丝NR207、NR232等可适用强度不同等级的管道钢的焊接。
3. 焊接工艺的选择:
A.、手工下向焊
手工下向焊接技术与传统的向上焊接相比具有焊缝质量好、电弧吹力强、挺度大、打底焊时可以单面焊双面成形、焊条熔化速度快、熔敷率高等优点,被广泛应用于管道工程建设中。随着输送压力的不断提高,油气管道钢管强度的不断增加,手工下向焊接技术经历了全纤维素型下向焊一混合型下向焊一复合型下向焊接这一发展进程。
①.全纤维素型下向焊接技术
全纤维素型下向焊接对焊机的主要要求是:
(1)具有陡降外特性,静特性曲线A段适当提高。
(2)外拖推力电流起作用时其数值要足够大。
(3)适当提高静特性曲线外拖拐点,以达到小滴过度,见图1。
全纤维型下向焊接工艺参数见表1。该工艺的关键在于根焊时要求单面焊双面成形;仰焊位置时防止熔滴在重力作用下出现背面凹陷及铁水粘连焊条。我国早期的下向焊均是纤维素型。
混合型下向焊接是指在长输管道的现场组焊时,采用纤维素型焊条根焊、热焊,低氢型焊条填充焊、盖面焊的手工下向焊接技术。主要用于焊接钢管材质级别较高的管道。陕京管道是我国第一条采用下向焊工艺和进口钢管及焊材建成的长距离管道。
20世纪90年代末期,大壁厚管材广泛应用国内外油、气和水电工业长输管道中,水电工业的压力管道中一般管径达1m以上,壁厚达10~60mm,在我国北方寒冷地区油气管道壁厚也达到10~24mm。与传统的向上焊相比,由于下向焊热输入低,熔深较浅,焊肉较薄,随着钢管壁厚的增加焊道层数也迅速增加,焊接时间和劳动强度随之加大,单纯的下向焊难以发挥其焊接速度快、效率高的特点。手工电弧焊不同壁厚钢管焊接层次及道数推参考表见表3。而根焊、热焊采用向下焊,填充焊与盖面焊采用向上焊的复合下向焊技术则可发挥两种焊接方法的优势,达到优质高效的效果。在半自动气体保护下向焊接技术应用于管道建设之前,大壁厚管道多采用复合型下向焊接技术。如某工业园区输水管道工程所用钢管规格为1400mm×14mm,材质为Q235—A。焊接过程中根焊热焊用纤维素焊条J425G(E6010),填充焊和盖面焊采用普通E4303焊条,使焊缝焊道层数由单一下向焊所需的7~8层,减少为4~5层,焊接时间可缩短30min,大大提高了生产效率。因此我们洛阳吉利管焊中心紧跟市场需求,开设了纤维素-半自动药芯自保焊下向焊专业。复合型下向焊是指根焊及热焊采用下向焊接方法,填充焊及盖面焊采用向上焊接方法的焊接工艺。其主要应用于焊接壁厚较大的管道。
半自动化焊接技术在我国的管道建设中的应用是20世纪90年代逐步引进、发展起来的。由于半自动焊具有生产效率高、焊接质量好、经济性好、易于掌握等优点,自引进中国管道建设中以来迅速地发展起来。半自动下向焊接技术主要分为两种操作方法:药芯焊丝自保护半自动下向焊和活性气体保护半自动下向焊。B、半自动下向焊
1.药芯焊丝自保护半自动焊技术
药芯焊丝适用于各种位置的焊接,其连续性适于自动化过程生产。工艺参数见表4(以X70钢管焊接为例)。
该工艺的主要优点:
(1)质量好。焊接缺陷通常产生于焊接接头处。同等管径的钢管手工下向焊接接头数比半自动焊接接头数多,采用半自动焊降低了缺陷的产生机率。通常应用的NR204、NR207焊丝属低氢金属,而传统的手工焊多采用纤维素焊条。由此可知,半自动焊可降低焊缝中的氢含量。同时,半自动焊输人线能量高,可降低焊缝冷却速度,有助于氢的溢出及减少和防止出现冷裂纹。
(2)效率高。药芯焊丝把断续的焊接过程变为连续的生产方式。半自动焊溶敷量大,比手工焊道少,溶化速度比纤维素手工下向焊提高警惕15%~20%。焊渣薄,脱渣容易,减少了层间清渣时间。
(3)综合成本低。半自动焊接设备具有通用性,可用于半自动焊,也可用于手弧焊或其他焊接法的焊接。以焊接厚度为8.7mm钢管为例:手工焊至少需3组焊工完成,半自动焊只需2组焊工,至少可减少2名焊工,也相应减少了焊机数量和等辅助工装数量。同时,药芯焊丝有效利用率高,焊接坡口小,即节省填充金属使用量,又提高了焊接速度,综合成本只及手弧焊的一半。
STT型CO2半自动焊时,焊机处于短路过渡方式,电源在一个过渡周期内,根据不同电弧电压值,输出不同的焊接电流。CO2气体保护焊是一种廉价,高效的焊接方法。传统的短路过度CO2焊接不能从根本上解决焊接飞溅大,控制熔深与成型的矛盾。采用波形控制技术的STT型CO2半自动焊机,保证了焊接过程稳定,焊缝成形美观,干伸长度变化影响小,显著降低了飞溅,减轻了焊工劳动强度。2.CO2活性气体保护半自动下向焊接技术
STT型CO2半自动焊以其优异的性能拓宽了CO2半自动焊在长输管道施工中的应用领域。中国石油天然气管道局曾在苏丹Muglad石油开发项目中首次使用了STT型CO2半自动下向焊接技术进行管道打底焊接,焊接工艺见表6。
C、全自动气体保护下向焊STT型CO2半自动焊与药芯焊丝自保护半自动焊是目前国内常用的半自动下向焊接方法,展示了在管道焊接领域良好的应用前景。
管道全自动气保护下向焊接技术使用可熔化的焊丝与主要焊金属之间的电弧为热焊来溶化焊丝和钢管,在焊接时向焊接区域输送保护气体以隔离空气的有害作用,通过连续送丝完成焊接。由于熔化极气保护焊时焊接区的保护简单,焊接区域易于观察,生产效率高,焊接工艺相对简单,便于控制,容易实现全位置焊接。
4. 操作方法:该工艺可实现全位置多机头同时工作,打底焊可从管内部焊接,也可从管外部焊接。打底焊可采用向上焊以防止熔透不够成烧穿,易于单面焊双面成型。焊接参数的调节一般在控制台或控制面板上,主要调节参数有:电压、送丝速度、每个焊头移动速度、摆动频率、摆动宽度及摆延迟时间。应当注意的是,因每条焊道焊接参数不同,整个焊缝的焊接参数应根据管材规格及现场条件,通过焊接试验合格后方可应用于生产。管道全自动气保护焊技术以其焊接质量高,焊接速度快等优点,在国外已经普及,而国内则处于推广阶段,全自动气体保护下向焊接技术是我国长输管道及市政燃气管道下向焊接技术发展的方向。
⑴根焊:
根焊是整个管接头焊接质量的关键。操作时,要求焊工必须正确掌握运条角度和运条方法,并保持均匀的运条速度。施焊时,一名焊工先从管接头的 12 点往前 10mm 处引弧,采用短弧焊作直线运条,也可有较小摆动,但动作要小,速度要快,要求均匀平稳,做到“听、看、送”的统一,即既要“听”到电弧击穿钢管的“扑扑”声,又要“看”到熔孔的大小,观察判断出熔池的温度,还要准确地将铁水“送”至坡口根部。熄弧时,应在熔池下方做一个熔孔,应比正常焊接时的熔孔大些,然后还要迅速用角磨机将收弧处打磨成 15~20mm 的缓坡,以利于再次引弧。要求在根焊时,在根焊焊接超过 50% 后,撤掉外对口器,但对口支座或吊架应至少在根焊完成后撤离。
⑵热焊:
热焊与根焊时间间隔应小于5min ,目的是使焊缝保持较高温度,以提高焊缝力学性能,防止裂纹产生。热焊的速度要快,运条角度也不可过大,以避免根部焊缝烧穿。
⑶填充焊:
第三、四遍焊接为填充焊,具体工作中,可根据填充高度的不同,适当加大焊接电流,稍做横向或反月牙摆动。同热焊一样,焊前须用角磨机对上一层焊缝进行打磨,避免因清渣不干净造成夹渣等缺陷。另外,合理掌握焊条角度、控制相应弧长也是防止缺陷产生的主要前提。
⑷盖面焊:
盖面焊前的清渣及打磨处理应有利于盖面层的焊接,通过焊条的适当摆动,可将坡口两侧覆盖,克服坡口未填满及咬边等缺陷,通常覆盖宽度按相关规范及工艺执。两名焊工收弧时应相互配合,一人须焊过 6 点位置 5~10mm 后熄弧。
在上述各层焊缝施焊中,应注意焊接接头不能重叠,应彼此错开 20~30mm ,用角磨机对各层焊缝进行清理,清理的结果应能有利于下道焊缝施焊的焊接质量。
5. 焊缝检测:
⑴焊缝表面质量要求:
施焊后的焊缝,按《管道下向焊焊接工艺规程》( SY/T4071-93 )规定,应清除熔渣、飞溅物等杂物,焊缝表面不得有裂纹、未熔合、气孔和夹渣等缺陷;咬边深度≤ 0.5mm ,在任何长 300mm 焊缝中两侧咬边累计长度≤ 50mm ;焊缝余高 0.5~2.0mm ,个别部位(管底部处于时钟5~7 时位置)不超过 3mm ,且长度不超过 50mm ;焊缝宽度比坡口每侧增宽 0.5~2.0mm 为宜。
⑵无损检验:
依据 SY4065-93 《石油天然气钢质管道对接焊缝超声波探伤质量分级》和 SY4056-93 《石油天然气钢质管道对接焊缝射线照相及质量分级》对焊缝进行 100% 超声波探伤和 100% 射线探伤,Ⅱ级为合格。
6. 缺陷分析:
在下向焊焊接施工中,存在的缺陷种类主要有:未焊透、未熔合、内凹、夹渣、气孔、裂纹等缺陷。在立焊与仰焊位置,裂纹、内凹的出现几率较多,尤其裂纹更集中地出现在仰焊位置,这与起初定位焊后过早撤除外对口器关系密切;而内凹则是因为根焊时,电弧吹力不够,另外铁水受重力作用而导致,这与焊工的技能水平有一定关系;多数的未焊透和未熔合与钢管组对时的错边、焊接时工艺参数的波动、操作者的水平、运条方法的选用、工作时急于求成等因素有一定关联;气孔和夹渣除去与环境、选用规范、母材和焊材的预处理有关外,焊缝的冷却速度对该缺陷的影响更大些。
焊接接质量好,可以节省焊接材料,降低工人劳动强度。

阅读全文

与x60钢材用什么焊材焊接相关的资料

热点内容
买什么不锈钢门好 浏览:232
如何焊接冰箱加散热网 浏览:298
钢筋笼制作中监理检查什么 浏览:953
气体保护焊接每平方厘米拉力多少 浏览:582
铝合金和不锈钢挂衣架哪个好 浏览:673
圆柱形模具在什么地方使用 浏览:702
x60钢材用什么焊材焊接 浏览:252
钢构的楼梯怎么算钢筋量 浏览:191
青山钢铁要多少子公司 浏览:767
rrb400w钢筋是什么意思 浏览:414
钢管沟槽连接管件数量怎么计算 浏览:925
钢铁雄心4游戏在什么地方下载 浏览:510
什么钢支撑焊缝检测 浏览:556
盛誉钢材批发部体育路怎么样 浏览:958
五层楼地基钢筋直径应该是多少的 浏览:192
神武890模具双多少钱 浏览:353
什么钢管耐火烧 浏览:233
桥梁钢模板焊接多少钱一吨 浏览:203
模具弹簧行程怎么算讲解视频 浏览:96
荣兴不锈钢铝合金怎么样 浏览:721