具体是怎样的裂痕。可能是材质,或者工艺问题,也可能是运输挤压等。或者是焊管替代等。具体可以找卖你货的厂家
⑵ 镀锌钢管内外层镀锌层出现爆皮现象!!
不正常,原因很多。温度,度锌时间,配比,钢管时否干净等。
⑶ 管材常见缺陷
一 内表面缺陷
1 内折
特征:在钢管的内表面上呈现直线或螺旋、半螺旋形的锯齿状缺陷。
产生原因:
1) 管坯:中心疏松、偏析;缩孔残余严重;非金属夹杂物超标。
2) 管坯加热不均、温度过高或过低、加热时间过长。
3) 穿孔区域:顶头磨损严重;穿孔机参数调整不当;穿孔辊老化等。
检判:钢管内表面不允许存在内折,管端内折应修磨或再切,修磨处壁厚实际值不得小于标准要求最小值;通长内折判废。
2 内结疤
特征:钢管内表面呈现斑疤,一般不生根易剥落。
产生原因:
1) 石墨润滑剂中带有杂质。
2) 荒管后端铁耳,被压入钢管内壁等。
检判:钢管内表面不允许存在,管端处应修磨及再切,修磨深度不应超标准要求负偏差,实际壁厚不得小于标准要求最小值;通长内结疤判废。
3 翘皮
特征:钢管内表面呈现直线或断续指甲状翘起的小皮。多出现在毛管头部,且易于剥落。
产生原因:
1) 穿孔机调整参数不当。
2) 顶头粘钢。
3) 荒管内氧化铁皮堆积等。
检判:钢管内表面允许存在无根易剥落(或在热处理时可烧掉)的翘皮。对有根的翘皮应修磨或切除。
4 内直道
特征:在钢管内表面存在具有一定宽度和深度的直线形划伤。
产生原因:
1) 轧制温度低,芯棒粘有金属硬物。
2) 石墨中含有杂质等。
检判:
1) 套管和普管允许深度不超过5%(压力容器类最大深度0.4mm)的内直道存在。
慎独超查德内直道应修磨、切除。
2) 边缘尖锐的内直道应修磨平滑。
5 内棱
特征:在钢管内表面存在具有一定宽度和深度的直线形凸起。
产生原因:芯棒磨损严重,修磨出不圆滑或过深等。
检判:
1)套管、管线管允许存在高度不超过壁厚道8%,最大高度不超过0.8mm不影响通径的内棱存在。超差应修修磨及再切。
2)普管、管线管允许存在高度不超过壁厚8%(最大高度为0.8mm)的内棱存在。超差应修磨及再切。
3)对L2级(即N5)探伤要求钢管,内棱高度不得超过5%(最大高度为0.5mm)。超差应修磨及再切。
4)边线尖锐的内棱应修磨平滑。
6 内鼓包
特征:钢管内表面呈现有规律的凸超且外表面没有损伤。
产生原因:连轧辊修磨量过大或掉肉等。
检判:按照内棱要求检判。
7 拉凹
特征:钢管内表面呈现有规律或无规律地凹坑且外表面无损伤。
产生原因:
1)连轧调整不当,各架辊轧速不匹配。
2)管坯加热不均匀或温度过低。
3)轧制中心线偏离,钢管与连轧后辊道碰撞产生等(注:此种原因2003.1提出,原理尚在探讨)。
检判:不超过壁厚负偏差,实际壁厚大于壁厚要求最小值的拉凹允许存在。超标的拉凹应切除。(注:拉凹严重发展即为拉裂,此种伤应严格检验)。
8 内螺纹(此缺陷只在阿塞尔机组产生)
特征:钢管内表面有螺旋状痕迹,多出现在薄壁管内表面,有凹凸不平的明显手感。产生原因:
1) 斜轧工艺的固有缺陷。在阿塞尔轧管机工艺参数调整不当时,这种缺陷更为突出。
2) 变形量分配不合理,阿塞尔减壁量过大。
3) 阿塞尔轧型辊型配置不当。
检判:钢管内螺纹缺陷深度不大于0.3mm,且在一定的公差范围之内。
二 外表面缺陷
1 外折
特征:在钢管外表面呈现螺旋状的层状折叠。
产生原因:
1) 管坯表面有折叠或裂缝。
2) 管坯的皮下气孔,皮下夹杂较严重。
3) 管坯表面清理不良或有耳子、错面等。
4) 轧制过程中,钢管表面被掀起划伤,通过轧制又被压合到钢管的基体上,形成外折等。
检判:不允许存在:轻微的可进行修磨,修磨后壁厚和外径实际值不得小于标准要求的最小值。
2 离层
特征:在钢管表面上呈现螺旋形或块状的分层和破裂。
产生原因:管坯中非金属夹杂物严重、残余缩孔或严重疏松等。
检判:不允许存在。
3 外结疤
特征:钢管外表面呈现斑疤。
产生原因:
1) 轧辊粘钢、老化、磨损严重或硌辊。
2) 输送辊道粘有异物或磨损严重。
检判:
1) 外结疤成片分布应修磨或切除。
2 ) 在有外结疤的管段上,外结疤面积超过10%应切除或修磨。
3) 深度超过壁厚5%的外结疤应修磨。
4) 修磨处的壁厚、外径实际值不得小于标准要求的最小值。
4 麻面
特征:钢管表面呈现高低不平的麻坑。
产生原因:
1) 钢管在炉内停留时间过长或加热时间过高,使表面生成氧化铁皮过厚,清除不净,轧入钢管表面。
2) 高压水除磷设备不正常工作,除磷不净等。
检判:
1) 局部不超过壁厚负偏差的麻面允许存在。
2) 麻面面积不得超过有麻面管段面积20%。
3) 超差麻面可修磨或切除,修磨处壁厚、外径实际值不得小于标准要求最小值。4) 严重麻面判废。
5 青线
特征:钢管外表面呈现对称或不对称的直线形轧痕。
产生原因:
1) 定径机孔型错位或磨损严重。
2) 定径机轧辊孔型设计不合理。
3) 轧低温钢。
4) 轧辊加工不好,轧辊边部倒角太小。
5) 轧辊装配不好,间隙过大等。
检判:
1) 套管外表面允许高度不超过0.2mm青线存在,超差应修磨。
2) 高压容器类管不允许有手感青线存在。有手感青线必须清除。修磨处应圆滑无棱角。
3) 普管类钢管(结构、流体、液压支架等)允许高度不超过0.4mm青线存在,超差应修磨。
4) 边缘尖锐的青线应修磨平滑。
5) 修磨处壁厚、外径值实际值不得超过标准要求最小值。
6 发纹
特征:在钢管外表面上,呈现连续或不连续的发状细纹。
产生原因:
1) 管坯有皮下气孔或夹杂物。
2) 管坯表面清理不彻底,有细小裂纹存在。
3) 轧辊过度磨损、老化。
4) 轧辊加工精度不好等。
检判:钢管外表面不允许存在肉眼可见的发纹,如存在应完全清除,清除后壁厚、外径实际值不得小于标准要求最小值。
7 网状裂纹
特征:钢管外表面上呈现带状且螺距大的鱼鳞状小裂纹。
产生原因:
1) 管坯有害元素含量过高(如砷元素)。
2) 穿孔辊老化、粘钢。
3) 导板粘钢等。
检判:应完全清除。清除后的壁厚、外径实际值不得小于标准要求最小值。
8 划伤
特征:钢管外表面呈螺旋形或直线形沟状缺陷,大部分可以看到沟底。
产生原因:
1) 机械划伤主要产生于辊道、冷床、矫直、运输方面。
2) 轧辊加工不好或磨损严重或辊缝夹有异物等。
检判:
1) 钢管外表面允许局部存在不超过0.5mm的划伤,超0.5mm划伤应修磨。修磨处壁厚、外径实际值不得小于标准要求最小值。
2) 边缘尖锐的划伤应修磨平滑。
9 碰瘪
特征:钢管外表面呈现外凹里凸的现象,而钢管壁厚无损伤。
产生原因:
1) 在吊运中碰击至瘪。
2) 矫直咬入时碰瘪。
3) 定径机后辊道碰瘪等。
检判:局部不超外径负偏差且表面平滑的碰瘪可以存在。超差时切除。
10 碰伤
特征:钢管外表面因碰撞产生无规律的伤痕。
产生原因:可产生于冷区与热区的各种碰撞等。
检判:
1) 外表面允许局部存在深度不超过0.4mm的碰伤。
2) 超过0.4mm碰伤应修磨平滑且修磨处外径、壁厚实际值不得小于标准要求最小值。
11 矫凹
特征:钢管外表面呈螺旋形的凹入。
产生原因:
1) 矫直机辊角度调整不当、压下量过大。
2) 矫直辊磨损严重等。
检判:钢管外表面允许存在无明显棱角的和内表面不突出,且外径尺寸符合公差要求的矫凹。对超标矫凹应切除。
12 轧折
特征:钢管管壁沿纵向局部或通长呈现外凹里凸的皱折,外表面成条状凹陷。
产生原因:
1) 孔型宽展系数选择太小。
2) 轧机调整不当致使孔型错位或轧制中心线不一致。
3) 连轧机各架压下量分配不当等。
由于以上原因使得钢管在轧制过程中金属进入轧辊间隙或者管子失掉稳定性造成管壁皱折。
检判:不允许存在。应切除或判废。
13 拉裂
特征:钢管表面有拉开破裂现象,多产生在薄壁管上。
产生原因:
1) 由于管坯加热温度不均,使得变形部俊,温度低的部位拉力轧制,当拉力较大时,将管子拉裂。
2) 连轧机各架速度和辊缝调整不当,造成拉钢而撕破。
3) 毛管壁厚影响,当穿孔机供给连轧机的毛管壁厚较小时,在连轧机金属变形量比设计变形量减小,造成连轧机拉力轧制,拉力大时而撕破。
4) 管坯本身局部存在较严重的夹杂物。
检判:不允许存在。应切除或判废
三 尺寸超差
1 壁厚不均
特征:钢管在同一截面上壁厚不均匀,最大壁厚和最小壁厚相差大。
产生原因:
1)管坯加热不均。
2)穿孔机轧制线未调正,定心辊不稳定。
3)顶头磨损或顶头后孔偏心。
4)管坯定心孔补正。
5)管坯弯曲度、切斜度过大。
检判:逐支测量,壁厚不均端应切除。
2 壁厚超差
特征:钢管壁厚单向超差,超正偏差者称之为壁厚超厚;超负偏差者称之为壁厚超薄。
产生原因:
1)管坯加热不均。
2)穿孔机调整不当。
检判:逐支测量,端部超差应切除,全长超差应改判或判废。
3 外径超差
特征:钢管外径超标,超正差者称之为外径大,超负差者称之为外径小。
产生原因:
1)定径机孔型磨损过大,或新孔型设计并不合理。
2)终轧温度不稳定。
检判:逐支测量,超标应给予改判或判废。
4 弯曲
特征:钢管沿长度方向不平直或在钢管端部呈现鹅头状的弯曲称之为“鹅头弯”。
产生原因:
1)人工热检时局部水冷造成。
2)矫直时调整不当,矫直辊磨损严重。
3)定径机加工、装配及调整不当。
4)吊装运输中造成弯曲。
检判:弯曲度超标时,可二次重矫直,否则判废。无法矫直的“鹅头弯”应给予切除。
5 长度超差
特征:钢管长度超出要求,超正差称长尺,超负差称短尺。
产生原因:
1) 管坯长度超标。
2) 轧制不稳定。
3) 分切时没控制好等。
检判:长尺管再切或改判,短尺管改判或判废
⑷ 不锈钢管材为什么会起皮
不锈钢管材是一种抄中空的长条钢材,大袭量用作输送流体的管道,如石油、天燃气、水、煤气、蒸气等,另外,在搞弯、抗扭强度相同时,重量较轻,所以也广泛用于制造机械零件和工程结构。也常用作生产各种常规武器、枪管、炮弹等。
1、精炼技术不够,非金属夹杂物没有除去;
2、高温固溶没有完全均匀奥氏体化;
3、冷拔或者冷轧过程中热处理不当,导致金属加工硬化受伤,表面内应力大,尽管后来继续热处理,但是钢管已经受伤了导致使用中出现问题。
我经常看到有的拉管厂出现拉裂纹,起皮,或者放置时出现裂纹。
⑸ 为什么钢在热处理后表面会有一层厚厚的皮
厚厚的皮是氧化皮
主要是空气中的氧气和铁作用生成的
FEO,FE2O3,FE3O4的混合物
570度以下只要是FEO
温度较高时主要是FE2O3
加热时间越长温度越高氧化皮越多
⑹ 退火炉出来的钢管氧化皮不掉是什么原因
氧化皮是金属加热时炉气中的氧化性气体与金属发生化学反应,在金属表面形成氧化皮的现象。当钢材表层的铁以离子状态由里向外表面扩散,而氧化性气体中的氧以原子状态由钢材外表面经吸附后向里层扩散。
由于氧化皮的膨胀系数和钢材不同,因此较易脱落,同事氧化皮的熔点在1300-1350℃较低,高温时易熔化,氧化皮的脱落和熔化,使新暴露的钢材表面二次氧化,增加金属的损耗。
下面我们来看下氧化皮的危害:
首先锻件表面氧化皮会造成金属的损耗,不仅会降低模锻件表面质量,附着在锻件表面的氧化皮,在热处理时会导致锻件组织和性能的不均匀。氧化皮硬度较高,模锻时会加速模锻型腔的磨损,机加工时会加速刀具的损坏。并且氧化皮是呈碱性的,脱落在加热炉的炉膛内和酸性的耐火材料起化学反应,缩短加热炉寿命。
因此锻件表面氧化皮成为锻造行业棘手问题,通常使用喷砂、抛丸和加热酸洗以及机械去氧化皮。后来一款采用高压水除磷原理去氧化皮设备面世,赢得了广大锻造客户的热捧。它在高压碰嘴的作用下,形成的扇形面像一把锋利的刀片的极速水流,将致密的铁皮切开,形成裂痕。
由此可见,薄的扇面具有更大的打击力;高压水透过裂缝遇到高温母材急速汽化蒸发,形成类似爆破的效果,将氧化铁皮和母材剥离;氧化铁皮在受到水的冲击后遇冷收缩,产生横向剪切力,使将氧化铁皮和母材剥离;带有前倾角的水射流的冲刷作用将已疏松的铁皮冲刷掉。
⑺ 锅炉过热器爆管的现象和原因
1、长期过热
1.1失效机理
长期过热是指管壁温度长期处于设计温度以上而低于材料的下临界温度,超温幅度不大但时间较长,锅炉管子发生碳化物球化,管壁氧化减薄,持久强度下降,蠕变速度加快,使管径均匀胀粗,最后在管子的最薄弱部位导致脆裂的爆管现象。这样,管子的使用寿命便短于设计使用寿命。超温程度越高,寿命越短。在正常状态下,长期超温爆管主要发生在高温过热器的外圈和高温再热器的向火面。在不正常运行状态下,低温过热器、低温再热器的向火面均可能发生长期超温爆管。长时超温爆管根据工作应力水平可分为三种:高温蠕变型、应力氧化裂纹型、氧化减薄型。
1.2产生失效的原因
(1)管内汽水流量分配不均;
(2)炉内局部热负荷偏高;
(3)管子内部结垢;
(4)异物堵塞管子;
(5)错用材料;
(6)最初设计不合理。
1.3.故障位置
(1)高温蠕变型和应力氧化裂纹型主要发生在高温过热器的外圈的向火面;在不正常的情况下,低温过热器也可能发生;
(2)氧化减薄型主要发生在再热器中。
1.4 爆口特征
长期过热爆管的破口形貌,具有蠕变断裂的一般特性。管子破口呈脆性断口特征。爆口粗糙,边缘为不平整的钝边,爆口处管壁厚度减薄不多。管壁发生蠕胀,管径胀粗情况与管子材料有关,碳钢管径胀粗较大。20号钢高压锅炉低温过热器管破裂,最大胀粗值达管径的15%,而12CrMoV钢高温过热器管破裂只有管径5%左右的胀粗。
(1)高温蠕变型
a.管子的蠕胀量明显超过金属监督的规定值,爆口边缘较钝;
b.爆口周围氧化皮有密集的纵向裂纹,内外壁氧化皮比短时超温爆管厚,超温程度越低,时间越长,则氧化皮越厚和氧化皮的纵向裂纹分布的范围也越广;
c.在爆口周围的较大范围内存在着蠕变空洞和微裂纹;
d.向火侧管子表面已完全球化;
e.弯头处的组织可能发生再结晶;
f.向火侧和背火侧的碳化物球化程度差别较大,一般向火侧的碳化物己完全球化。
(2)应力氧化裂纹型
a.管子的蠕胀量接近或低于金属监督的规定值,爆口边缘较钝,呈典型的厚唇状;
b.靠近爆口的向火侧外壁氧化层上存在着多条纵向裂纹,分布范围可达整个向火侧。内外壁氧化皮比短时超温爆管时的氧化皮厚;
c.纵向应力氧化裂纹从外壁向内壁扩展,裂纹尖端可能有少量空洞;
d.向火侧和背火侧均发生严重球化现象,并且管材的强度和硬度下降;
e.管子内壁和外壁的氧化皮发生分层;
f.燃烧产物中的S、Cl、Mn、Ca等元素在外壁氧化层沉积和富集。
(3)氧化减薄型
a.管子向火侧、背火侧的内外壁均产生厚度可达1.0~1.5mm的氧化皮;
b.管壁严重减薄,仅为原壁厚的1/3~l/8 ;
c.内、外壁氧化皮均分层,为均匀氧化。内壁氧化皮的内层呈环状条纹;
d.向火侧组织己经完全球化,背火侧组织球化严重,并且强度和硬度下降;
e.燃烧产物中的S、Cl、 Mn、Ca等元素在外壁氧化层沉积和富集,促进外壁氧化。
1.5.防止措施
对高温蠕变型可通过改进受热面、使介质流量分配合理;改善炉内燃烧、防止燃烧中心偏高;进行化学清洗,去除异物、沉积物等方法预防。对应力氧化裂纹型因管子寿命已接近设计寿命,可将损坏的管子予以更换。对氧化减薄型应完善过热器的保护措施。
2、短期过热
2.1.失效机理
短期过热
2.2.产生失效的原因
(1)过热器管内工质的流量分配不均匀,在流量较小的管子内,工质对管壁的冷却能力较差,使管壁温度升高,造成管壁超温;
(2)炉内局部热负荷过高(或燃烧中心偏离),使附近管壁温度超过设计的允许值;
(3)过热器管子内部严重结垢,造成管壁温度超温;
(4)异物堵塞管子,使过热器管得不到有效的冷却;
(5)错用钢材。错用低级钢材也会造成短期过热,随着温度升高,低级钢材的许用应力迅速降低,强度不足而使管子爆破;
(6)管子内壁的氧化垢剥落而使下弯头处堵塞;
(7)在低负荷运行时,投入减温水不当,喷入过量,造成管内水塞,从而引起局部过热;
(8)炉内烟气温度失常。
2.3.故障位置
常发生在过热器的向火面直接和火焰接触及直接受辐射热的受热面管子上。
2.4.爆口形状
(1)爆口塑性变形大,管径有明显胀粗,管壁减薄呈刀刃状;
(2)一般情况下爆口较大,呈喇叭状;
(3)爆口呈典型的薄唇形爆破;
(4)爆口的微观为韧窝(断口由许多凹坑构成);
(5)爆口周围管子材料的硬度显著升高;
(6)爆口周围内、外壁氧化皮的厚度,取决于短时超温爆管前长时超温的程度,长时超温程度越严重,氧化皮越厚。
2.5.防止措施
预防短期过热的方法有改进受热面,使介质流量分配合理;稳定运行工况,改善炉内燃烧,防止燃烧中心偏离;进行化学清洗;去除异物、沉积物;防止错用钢材:发现错用及时采取措施。
3.磨损
3.1.失效机理
包括飞灰磨损、落渣磨损、吹灰磨损和煤粒磨损。以飞灰磨损为例进行分析。飞灰磨损是指飞灰中夹带Si02, Fe03, Al2O3等硬颗粒高速冲刷管子表面,使管壁减薄爆管。
3.2.产生失效的原因
(1)燃煤锅炉飞灰中夹带硬颗粒;
(2)烟速过高或管子的局部烟气速度过高(如积灰时烟气通道变小,提高了烟气流动速度;
(3)烟气含灰浓度分布不均,局部灰浓度过高。
3.3.故障位置
常发生在过热器烟气入口处的弯头、出列管子和横向节距不均匀的管子上。
3.4.爆口特征
(1)断口处管壁减薄,呈刀刃状;
(2)磨损表面平滑,呈灰色;
(3)金相组织不变化,管径一般不胀粗。
3.5.防止措施
通常采用减少飞灰撞击管子的数量、速度或增加管子的抗磨性来防止飞灰磨损,如:通过加屏等方法改变流动方向和速度场;加设装炉内除尘装置;杜绝局部烟速过高;在易磨损管子表面加装防磨盖板。还应选用适于煤种的炉型、改善煤粉细度、调整好燃烧、保证燃烧完全。
4、腐蚀疲劳(或汽侧的氧腐蚀)
4.1.失效机理
腐蚀疲劳主要是因为水的化学性质所引起的,水中氧含量和pH值是影响腐蚀疲劳的主要因素。管内的介质由于氧的去极化作用,发生电化学反应,在管内的钝化膜破裂处发生点蚀形成腐蚀介质,在腐蚀介质和循环应力(包括启停和振动引起的内应力)的共同作用下造成腐蚀疲劳爆管。
4.2.产生失效的原因
(1)弯头的应力集中,促使点蚀产生;
(2)弯头处受到热冲击,使弯头内壁中性区产生疲劳裂纹;
(3)下弯头在停炉时积水;
(4)管内介质中含有少量碱或游离的二氧化碳;
(5)装置启动及化学清洗次数过多。
4.3.故障位置
常发生在水侧,然后扩展到外表面。过热器的管弯头内壁产生点状或坑状腐蚀,主要在停炉时产生腐蚀疲劳。
4.4.爆口特征
(1)在过热器的管内壁产生点状或坑状腐蚀,典型的腐蚀形状为贝壳状;
(2)运行时腐蚀疲劳的产物为黑色磁性氧化铁,与金属结合牢固;停炉时,腐蚀疲劳的产物为砖红色氧化铁;
(3)点状和坑状腐蚀区的金属组织不发生变化;
(4)腐蚀坑沿管轴方向发展,裂纹是横断面开裂,相对宽而钝,裂缝处有氧化皮。
4.5.防止措施
防止氧腐蚀应注意停炉保护;新炉起用时,应进行化学清洗,去除铁锈和脏物,在内壁形成一层均匀的保护膜;运行中使水质符合标准,适当减小PH值或增加锅炉中氯化物和硫酸盐的含量。
5、应力腐蚀裂纹
5.1.失效机理
这是指在介质含氯离子和高温条件下,由于静态拉应力或残余应力作用产生的管子破裂现象。
5.2.产生失效的原因
(1)介质中含氯离子、高温环境和受高拉应力,这是产生应力腐蚀裂纹的三个基本条件;
(2)在湿空气的作用下,也会造成应力腐蚀裂纹;
(3)启动和停炉时,可能有含氯和氧的水团进入钢管;
(4)加工和焊接引起的残余应力引起的热应力。
5.3.故障位置
常发生在过热器的高温区管和取样管。
5.4.爆口特征
(1)爆口为脆性形貌,一般为穿晶应力腐蚀断口;
(2)爆口上可能会有腐蚀介质和腐蚀产物;
(3)裂纹具有树枝状的分叉特点,裂纹从蚀处产生,裂源较多。
5.5.防止措施
防止应力腐蚀裂纹应注意去除管子的残余应力;加强安装期的保护,注意停炉时的防腐;防止凝汽器泄漏,降低蒸汽中的氯离子和氧的含量。
6、热疲劳
6.1.失效机理
热疲劳是指炉管因锅炉启停引起的热应力、汽膜的反复出现和消失引起的热应力和由振动引起的交变应力作用而发生的疲劳损坏。
6.2.产生失效的原因
(1)烟气中的S、Na、V、Cl等物质促进腐蚀疲劳损坏;
(2)炉膛使用水吹灰,管壁温度急剧变化,产生热冲击;
(3)超温导致管材的疲劳强度严重下降;
(4)按基本负荷设计的机组改变为调峰运行。
6.3.故障位置
常发生在过热器高热流区域的管子外表面。
6.4.防止措施
防止热疲劳产生的措施有改变交变应力集中区域的部件结构;改变运行参数以减少压力和温度梯度的变化幅度;设计时应考虑间歇运行造成的热胀冷缩;避免运行时机械振动;调整管屏间的流量分配,减少热偏差和相邻管壁的温度;适当提高吹灰介质的温度,降低热冲击。
7.高温腐蚀
7.1.失效机理
Na2S04等低熔点化合物破坏管子外表面的氧化保护层,与金属部件相互作用,在界面上生成新的松散结构的氧化物,使管壁减薄,导致爆管。
7.2.产生失效的原因
(1)燃料中含有V、Na和S等低熔点化合物;
(2)局部烟温过高,腐蚀性的低熔点化合物粘附在金属表面,导致高温腐蚀;
(3)腐蚀区内的覆盖物、烟气中的还原性气体和烟气的直接冲刷,将促进高温腐蚀的产生。
7.3.故障位置
高温腐蚀常发生在过热器及吊挂和定位零件的向火侧外表面。
7.4爆口特征
(l)裂纹萌生于管子外壁,断口为脆性厚唇式;
(2)沿纵向开裂,在相当于时钟面10点和2点处有浅沟槽腐蚀坑,呈鼠啃状;
(3)外壁有明显减薄,但不均匀,无明显胀粗;
(4)外壁有氧化垢,呈鳄鱼皮花样,垢中含黄色、白色、褐色产物,垢较疏松,为熔融状沉积物,最内层氧化物为硬而脆的黑灰色。
7.5.防止措施
防止高温腐蚀的方法有控制局部烟温,防止低熔点腐蚀性化合物贴附在金属表面上;使烟气流程合理,尽量减少热偏差;在燃煤锅炉中加入CaSO4和MgSO4等附加剂;易发生高温腐蚀的区域采用表面防护层或设置挡板;除去管子表面的附着物。
8.异种金属焊接
8.1.失效机理及原因
焊接接头处因两种金属的蠕变强度不匹配,以及焊缝界面附近的碳近移,使异种金属焊接界面断裂失效。其中,两种金属的蠕变强度相差极大是异种金属焊接早期失效的主要原因。
8.2.故障位置
常发生在过热器出口两种金属的焊接接头处,当焊缝的蠕变强度相当于其中一种金属的蠕变强度时,断裂发生在另一种金属的焊缝界面上。
8.3.防止措施
稳定运行是减少异种金属焊接失效最关键的因素;当两种金属焊接时,在其中加入具有中间蠕变强度的过渡段,使焊缝界面两侧蠕变强度差值明显减少;在过渡段的两侧选用性质不同的焊条,使其分别与两种金属的性质相匹配。
9.质量控制失误
质量控制失误是指在制造、安装、运行中由于外界失误的因素所造成的损坏。质量控制失误的原因有:维修损伤;化学清理损伤;管材缺陷(管材金属不合格或错用管材);焊接缺陷等。加强电厂运行、检修及各种制度的管理是防止质量控制失误出现的有效手段