① 钢筋锚固长度怎样计算
钢筋算量基本方法小结
一、梁
(1) 框架梁
一、首跨钢筋的计算
1、上部贯通筋
上部贯通筋(上通长筋1)长度=通跨净跨长+首尾端支座锚固值
2、端支座负筋
端支座负筋长度:第一排为Ln/3+端支座锚固值;
第二排为Ln/4+端支座锚固值
3、下部钢筋
下部钢筋长度=净跨长+左右支座锚固值
以上三类钢筋中均涉及到支座锚固问题,那么总结一下以上三类钢筋的支座锚固判断问题:
支座宽≥Lae且≥0.5Hc+5d,为直锚,取Max{Lae,0.5Hc+5d }。
钢筋的端支座锚固值=支座宽≤Lae或≤0.5Hc+5d,为弯锚,取Max{Lae,支座宽度-保护层+15d }。
钢筋的中间支座锚固值=Max{Lae,0.5Hc+5d }
4、腰筋
构造钢筋:构造钢筋长度=净跨长+2×15d
抗扭钢筋:算法同贯通钢筋
5、拉筋
拉筋长度=(梁宽-2×保护层)+2×11.9d(抗震弯钩值)+2d
拉筋根数:如果我们没有在平法输入中给定拉筋的布筋间距,那么拉筋的根数=(箍筋根数/2)×(构造筋根数/2);如果给定了拉筋的布筋间距,那么拉筋的根数=布筋长度/布筋间距。
6、箍筋
箍筋长度=(梁宽-2×保护层+梁高-2×保护层)*2+2×11.9d+8d
箍筋根数=(加密区长度/加密区间距+1)×2+(非加密区长度/非加密区间距-1)+1
注意:因为构件扣减保护层时,都是扣至纵筋的外皮,那么,我们可以发现,拉筋和箍筋在每个保护层处均被多扣掉了直径值;并且我们在预算中计算钢筋长度时,都是按照外皮计算的,所以软件自动会将多扣掉的长度在补充回来,由此,拉筋计算时增加了2d,箍筋计算时增加了8d。
7、吊筋
吊筋长度=2*锚固(20d)+2*斜段长度+次梁宽度+2*50,其中框梁高度>800mm 夹角=60° ≤800mm 夹角=45°
二、中间跨钢筋的计算
1、中间支座负筋
中间支座负筋:第一排为:Ln/3+中间支座值+Ln/3;
第二排为:Ln/4+中间支座值+Ln/4
注意:当中间跨两端的支座负筋延伸长度之和≥该跨的净跨长时,其钢筋长度:
第一排为:该跨净跨长+(Ln/3+前中间支座值)+(Ln/3+后中间支座值);
第二排为:该跨净跨长+(Ln/4+前中间支座值)+(Ln/4+后中间支座值)。
其他钢筋计算同首跨钢筋计算。LN为支座两边跨较大值。
二、其他梁
一、非框架梁
在03G101-1中,对于非框架梁的配筋简单的解释,与框架梁钢筋处理的不同之处在于:
1、 普通梁箍筋设置时不再区分加密区与非加密区的问题;
2、 下部纵筋锚入支座只需12d;
3、 上部纵筋锚入支座,不再考虑0.5Hc+5d的判断值。
未尽解释请参考03G101-1说明。
二、框支梁
1、框支梁的支座负筋的延伸长度为Ln/3;
2、下部纵筋端支座锚固值处理同框架梁;
3、上部纵筋中第一排主筋端支座锚固长度=支座宽度-保护层+梁高-保护层+Lae,第二排主筋锚固长度≥Lae;
4、梁中部筋伸至梁端部水平直锚,再横向弯折15d;
5、箍筋的加密范围为≥0.2Ln1≥1.5hb;
7、 侧面构造钢筋与抗扭钢筋处理与框架梁一致。
二、 剪力墙
在钢筋工程量计算中剪力墙是最难计算的构件,具体体现在:
1、剪力墙包括墙身、墙梁、墙柱、洞口,必须要整考虑它们的关系;
2、剪力墙在平面上有直角、丁字角、十字角、斜交角等各种转角形式;
3、剪力墙在立面上有各种洞口;
4、墙身钢筋可能有单排、双排、多排,且可能每排钢筋不同;
5、墙柱有各种箍筋组合;
6、连梁要区分顶层与中间层,依据洞口的位置不同还有不同的计算方法。
(1) 剪力墙墙身
一、剪力墙墙身水平钢筋
1、墙端为暗柱时
A、外侧钢筋连续通过 外侧钢筋长度=墙长-保护层
内侧钢筋=墙长-保护层+弯折
B、外侧钢筋不连续通过 外侧钢筋长度=墙长-保护层+0.65Lae
内侧钢筋长度=墙长-保护层+弯折
水平钢筋根数=层高/间距+1(暗梁、连梁墙身水平筋照设)
2、墙端为端柱时
A、外侧钢筋连续通过 外侧钢筋长度=墙长-保护层
内侧钢筋=墙净长+锚固长度(弯锚、直锚)
B、外侧钢筋不连续通过 外侧钢筋长度=墙长-保护层+0.65Lae
内侧钢筋长度=墙净长+锚固长度(弯锚、直锚)
水平钢筋根数=层高/间距+1(暗梁、连梁墙身水平筋照设)
注意:如果剪力墙存在多排垂直筋和水平钢筋时,其中间水平钢筋在拐角处的锚固措施同该墙的内侧水平筋的锚固构造。
3、剪力墙墙身有洞口时
当剪力墙墙身有洞口时,墙身水平筋在洞口左右两边截断,分别向下弯折15d。
二、剪力墙墙身竖向钢筋
1、首层墙身纵筋长度=基础插筋+首层层高+伸入上层的搭接长度
2、中间层墙身纵筋长度=本层层高+伸入上层的搭接长度
3、顶层墙身纵筋长度=层净高+顶层锚固长度
墙身竖向钢筋根数=墙净长/间距+1(墙身竖向钢筋从暗柱、端柱边50mm开始布置)
4、剪力墙墙身有洞口时,墙身竖向筋在洞口上下两边截断,分别横向弯折15d。
三、墙身拉筋
1、长度=墙厚-保护层+弯钩(弯钩长度=11.9+2*D)
2、根数=墙净面积/拉筋的布置面积
注:墙净面积是指要扣除暗(端)柱、暗(连)梁,即墙面积-门洞总面积-暗柱剖面积 - 暗梁面积;
拉筋的面筋面积是指其横向间距×竖向间距。
例:(8000*3840)/(600*600)
(二) 剪力墙墙柱
一、纵筋
1、首层墙柱纵筋长度=基础插筋+首层层高+伸入上层的搭接长度
2、中间层墙柱纵筋长度=本层层高+伸入上层的搭接长度
3、顶层墙柱纵筋长度=层净高+顶层锚固长度
注意:如果是端柱,顶层锚固要区分边、中、角柱,要区分外侧钢筋和内侧钢筋。因为端柱可以看作是框架柱,所以其锚固也同框架柱相同。
二、箍筋:依据设计图纸自由组合计算。
(三) 剪力墙墙梁
一、连梁
1、受力主筋
顶层连梁主筋长度=洞口宽度+左右两边锚固值LaE
中间层连梁纵筋长度=洞口宽度+左右两边锚固值LaE
2、箍筋
顶层连梁,纵筋长度范围内均布置箍筋 即N=((LaE-100)/150+1)*2+(洞口宽-50*2)/间距+1(顶层)
中间层连梁,洞口范围内布置箍筋,洞口两边再各加一根 即N=(洞口宽-50*2)/间距+1(中间层)
二、暗梁
1、主筋长度=暗梁净长+锚固
三、 柱
(一) 、基础层
一、柱主筋
基础插筋=基础底板厚度-保护层+伸入上层的钢筋长度+Max{10D,200mm}
二、基础内箍筋
基础内箍筋的作用仅起一个稳固作用,也可以说是防止钢筋在浇注时受到挠动。一般是按2根进行计算(软件中是按三根)。
(二) 、中间层
一、柱纵筋
1、 KZ中间层的纵向钢筋=层高-当前层伸出地面的高度+上一层伸出楼地面的高度
二、柱箍筋
1、KZ中间层的箍筋根数=N个加密区/加密区间距+N+非加密区/非加密区间距-1
03G101-1中,关于柱箍筋的加密区的规定如下
1)首层柱箍筋的加密区有三个,分别为:下部的箍筋加密区长度取Hn/3;上部取Max{500,柱长边尺寸,Hn/6};梁节点范围内加密;如果该柱采用绑扎搭接,那么搭接范围内同时需要加密。
2)首层以上柱箍筋分别为:上、下部的箍筋加密区长度均取Max{500,柱长边尺寸,Hn/6};梁节点范围内加密;如果该柱采用绑扎搭接,那么搭接范围内同时需要加密。
(三)、顶层
顶层KZ因其所处位置不同,分为角柱、边柱和中柱,也因此各种柱纵筋的顶层锚固各不相同。(参看03G101-1第37、38页)
一、角柱
角柱顶层纵筋长度:
一、内筋
a、内侧钢筋锚固长度为 :
弯锚(≦Lae):梁高-保护层+12d
直锚(≧Lae):梁高-保护层
二、外筋
b、外侧钢筋锚固长度为 外侧钢筋锚固长度=Max{1.5Lae ,梁高-保护层+柱宽-保护层}
柱顶部第一层:≧梁高-保护层+柱宽-保护层+8d(保证65%伸入梁内)
柱顶部第二层:≧梁高-保护层+柱宽-保护层
注意:在GGJ V8.1中,内侧钢筋锚固长度为 弯锚(≦Lae):梁高-保护层+12d
直锚(≧Lae):梁高-保护层
外侧钢筋锚固长度=Max{1.5Lae ,梁高-保护层+柱宽-保护层}
二、边柱
边柱顶层纵筋长度=层净高Hn+顶层钢筋锚固值,那么边柱顶层钢筋锚固值是如何考虑的呢?
边柱顶层纵筋的锚固分为内侧钢筋锚固和外侧钢筋锚固:
a、内侧钢筋锚固长度为 弯锚(≦Lae):梁高-保护层+12d
直锚(≧Lae):梁高-保护层
b、外侧钢筋锚固长度为:≧1.5Lae
注意:在GGJ V8.1中,内侧钢筋锚固长度为 弯锚(≦Lae):梁高-保护层+12d 直锚(≧Lae):梁高-保护层
外侧钢筋锚固长度=Max{1.5Lae ,梁高-保护层+柱宽-保护层}
三、中柱
中柱顶层纵筋长度=层净高Hn+顶层钢筋锚固值,那么中柱顶层钢筋锚固值是如何考虑的呢?
中柱顶层纵筋的锚固长度为 弯锚(≦Lae):梁高-保护层+12d
直锚(≧Lae):梁高-保护层
注意:在GGJ V8.1中,处理同上。
② 钢筋锚固长度从哪里算起
锚固长度从支座边缘算起,柱的保护层中那几公分梁特筋算入锚固长度。
钢筋的锚固长度一般指梁、板、柱等构件的受力钢筋伸入支座或基础中的总长度,包括直线及弯折部份。 根据《混凝土结构设计规范》GB50010-2002的规定:
在混凝土中受拉钢筋的锚固长度L=a×(f1/f2)×d。
式中:f1为钢筋的抗拉设计强度; f2为混凝土的抗拉设计强度;
a为钢筋外形系数,光面钢筋取0.16,带肋钢筋取0.14; d为钢筋的公称直径。
另外,当钢筋为HRB335级和HRB400级其直径大于25mm时,锚固长度应再乘1.1的修正系数。
在地震区还应根据抗震等级再乘一个系数:抗震等级一、二级时系数为1.15;三级时系数为1.05;四级时系数为1.0。
混凝土中受压钢筋的锚固长度为受拉钢筋锚固长度的0.7倍。

(2)底板的上部钢筋与下部钢筋的锚固怎么算扩展阅读
无柱帽柱上板带的板底钢筋,宜在距柱面为2倍纵筋锚固长度以外搭接钢筋,端部宜有垂直于板面的弯钩。
底部框架抗震墙房屋梁的主筋和腰筋,应按受拉钢筋的要求锚固在柱内,且支座上部的纵向钢筋在柱内的锚固长度,应符合钢筋混凝土框支梁的有关要求了。
在混凝土构件内沿长方向布置的钢筋,多为受力钢筋,主要在构件中承受拉力或压力。
钢筋混凝土结构中,按结构计算,承受拉力或压力的钢筋,是所配置钢筋中的主要部分,如纵筋,又叫纵向钢筋。纵筋是混凝土构件中最主要受力的钢筋,在混凝土构件内沿长方向布置的钢筋,多为受力钢筋,主要在构件中承受拉力或压力。
如柱子的竖向钢筋。梁的沿梁长度方向的钢筋、板的短方向钢筋、桩的竖向钢筋。墙一般用竖向钢筋和水平钢筋来表示。
③ 钢筋锚固长度怎么计算
钢筋锚固长度计算
答:受拉钢筋基本锚固长度Lab、LabE。因11G101系列1~3中,不必通过计算可查表取用。这样钢筋“基本”锚固长度Lab、LabE排除(实质受拉钢筋基本锚固长度Lab,在规范中也可计算的,因本题无“基本”两字故排除)。
剩下:受拉钢筋锚固长度La、抗震锚固长度LaE了。
受拉钢筋锚固长度La(非抗震)如何用公式计算?
公式:La=ζaLab
式中:
La——受拉钢筋锚固长度;
ζa——锚固长度修正系数,对普通钢筋按本规范第8.3.2条规定的规定取用,
Lab——受拉钢筋基本锚固长度Lab。
受拉钢筋抗震锚固长度LaE如何用公式计算?
公式:LaE=ζaELa
式中:
LaE——抗震锚固长度;
ζaE——纵向受拉钢筋抗震锚固长度修正系数,对一、二级抗震等级取1.15,对三级抗震等级取1.05,对四级抗震等级取1.00;
La——纵向受拉钢筋的锚固长度。
真的要钢筋锚固长度计算。突出一个“算”字,最好用例题。空了试试。
《混凝土结构设计规范》GB 50010—2010
8.3钢筋的锚固
8.3.1 当计算中充分利用钢筋的抗拉强度时,受拉钢筋的锚固应符合下列要求: 1 基本锚固长度应按下列公式计算:
普通钢筋 Lab=α×(ƒy/ƒt)×d (8.3.1-1)
式中:
Lab—受拉钢筋基本锚固长度;
ƒy—普通钢筋的抗拉强度设计值;
HPB300级钢筋为270N /mm ²,
HRB335 、HRBF335级钢筋为300N /mm ²,
HRB400 、 HRBF400、RRB400级钢筋为360N /mm ²,
HRB500 、 HRBF500级钢筋为435N /mm ²。
ƒt—混凝土轴心抗拉强度设计值;
当混凝土强度等级高于C60时,按C60取值。
混凝土强度等级:
C15为0.91N /mm ²,
C20为1.10 N /mm ²,
C25为1.27 N /mm ²,
C30为1.43 N /mm ²,
C35为1.57 N /mm ²,
C40为1.71 N /mm ²,
C45为1.80 N /mm ²,
C50为1.89 N /mm ²,
C55为1.96 N /mm ²,
≥ C60时取2.04N /mm ²。
α—锚固钢筋外系数,光面钢筋为0.16,带肋钢筋为0.14;
d—锚固钢筋的直径。
【例】:钢筋种类:HRB335,混凝土强度等级C20。求受拉钢筋基本锚固长度Lab?
解:钢筋种类:HRB335,是带肋钢筋,钢筋外系数α为0.14,钢筋的抗拉强度设计值ƒy为300N /mm ²,混凝土强度等级C20,混凝土轴心抗拉强度设计值ƒt为1.10 N /mm ²。
代入公式:Lab=α׃y/ƒt×d=0.14×300 /1.10×d=38.18d=38d。
答: 受拉钢筋基本锚固长度Lab=38d。与11G101—1受拉钢筋基本锚固长度受拉钢筋基本锚固长度Lab、LabE表中:钢筋种类:HRB335,混凝土强度等级:C20,抗震等级:为非抗震的(受拉钢筋基本锚固长度)等于38d相同。
④ 板上部纵筋伸入支座梁的锚固长度、板下部纵筋伸入支座梁的锚固长度怎么算,详细公式
钢筋混凝土现浇板的上部纵筋在跨中的连接处通常不需要伸入梁内,特别是在端支座以外的部分。与此相反,板下部的纵筋在伸入梁内时,其锚固长度必须满足一定的要求。具体而言,伸入梁内的长度应达到梁宽度的一半,且至少为5倍的钢筋直径(D),这一规定可以在11G101-1规范中找到详细说明。
计算时需要考虑的因素包括板的跨度以及钢筋的具体排布情况。例如,如果板的跨度为6米,且使用的钢筋直径为25毫米,那么板下部纵筋伸入梁内的最小长度应为125毫米(5×25)。这种计算方法有助于确保结构的稳定性和安全性,避免因钢筋锚固不足而导致的潜在风险。
为了确保结构设计的合理性,设计师在进行钢筋布置时,应当严格遵守规范要求。在实际操作中,还需要结合具体的工程条件,如混凝土强度等级、抗震设防烈度等因素,进行综合考虑,以确保设计的科学性和实用性。
值得注意的是,除了上述基本要求外,某些特殊情况下,如板下部纵筋在梁内的锚固长度可能需要根据实际工程情况进行适当调整。因此,在具体应用时,建议咨询专业工程师的意见,以确保设计方案的合理性和可行性。
此外,对于复杂的结构设计,设计师还应关注规范的最新版本,因为随着技术的进步和经验的积累,规范内容可能会有所更新。确保采用最新的规范标准,对于提高设计质量和保障施工安全至关重要。