导航:首页 > 模具设计 > 表面处理如何影响模具的寿命

表面处理如何影响模具的寿命

发布时间:2023-02-19 02:21:54

A. 提高模具寿命的方法有哪些

在实际中提高模具的使用寿命的方法:
1、保持模具零件的位置稳定
在模具工作时,要求模具上所有的部件保持稳定的设计位置,模具加工间隙包括冲裁、弯曲、成形等凸凹模间隙的均匀配合,是控制相对位置的重要方面。
2、冲压中的材料控制
在整个冲压过程中,如何保证被冲压材料的位置和支承,应考虑材料的应力和应变,以及材料的约束问题。
3、模具工作时的振动控制
为了延长模具的寿命,有意将凸模有效部分加长时,应采取措施防止因凸模振动而产生的歪斜或歪扭。
4、对制件的废料控制
废料上升是由于间隙过大,冲裁时作用于材料上的拉力使得冲压件比模孔小,而又由于凸模底面与废料密贴所产生的真空吸着现象所引起的,废料会减少模具寿命。
5、模具负荷的控制
要求模具的负荷中心与冲床的压力中心在前后左右方向都基本一致。
总之,如果在模具的设计上充分考虑以上5个方面,就能够大大提高模具的使用寿命,降低模具的维修成本,减少企业的经济负担。

B. 模具表面处理技术

模具表面处理技术

模具热处理是保证模具性能的重要工艺过程。它对模具的如下性能有着直接的影响。

模具的制造精度:组织转变不均匀、不彻底及热处理形成的残余应力过大造成模具在热处理后的加工、装配和模具使用过程中的变形,从而降低模具的精度,甚至报废。

模具的强度:热处理工艺制定不当、热处理操作不规范或热处理设备状态不完好,造成被处理模具强度(硬度)达不到设计要求。

模具的工作寿命:热处理造成的组织结构不合理、晶粒度超标等,导致主要性能如模具的韧性、冷热疲劳性能、抗磨损性能等下降,影响模具的工作寿命。

模具的制造成本:作为模具制造过程的中间环节或最终工序,热处理造成的开裂、变形超差及性能超差,大多数情况下会使模具报废,即使通过修补仍可继续使用,也会增加工时,延长交货期,提高模具的制造成本。

正是热处理技术与模具质量有十分密切的关联性,使得这二种技术在现代化的进程中,相互促进,共同提高。20世纪80年代以来,国际模具热处理技术发展较快的领域是真空热处理技术、模具的表面强化技术和模具材料的预硬化技术。

模具的真空热处理技术

真空热处理技术是近些年发展起来的一种新型的热处理技术,它所具备的特点,正是模具制造中所迫切需要的,比如防止加热氧化和不脱碳、真空脱气或除气,消除氢脆,从而提高材料(零件)的塑性、韧性和疲劳强度。真空加热缓慢、零件内外温差较小等因素,决定了真空热处理工艺造成的零件变形小等。

按采用的冷却介质不同,真空淬火可分为真空油冷淬火、真空气冷淬火、真空水冷淬火和真空硝盐等温淬火。模具真空热处理中主要应用的是真空油冷淬火、真空气冷淬火和真空回火。为保持工件(如模具)真空加热的优良特性,冷却剂和冷却工艺的选择及制定非常重要,模具淬火过程主要采用油冷和气冷。

对于热处理后不再进行机械加工的模具工作面,淬火后尽可能采用真空回火,特别是真空淬火的工件(模具),它可以提高与表面质量相关的机械性能,如疲劳性能、表面光亮度、而腐蚀性等。

热处理过程的计算机模拟技术(包括组织模拟和性能预测技术)的成功开发和应用,使得模具的智能化热处理成为可能。由于模具生产的小批量(甚至是单件)、多品种的特性,以及对热处理性能要求高和不允许出现废品的特点,又使得模具的智能化热处理成为必须。模具的智能化热处理包括:明确模具的结构、用材、热处理性能要求模具加热过程温度场、应力场分布的计算机模拟模具冷却过程温度场、相变过程和应力场分布的计算机模拟加热和冷却工艺过程的仿真淬火工艺的制定热处理设备的自动化控制技术。国外工业发达国家,如美国、日本等,在真空高压气淬方面,已经开展了这方面的技术研发,主要针对目标也是模具。

模具在工作中除了要求基体具有足够高的强度和韧性的合理配合外,其表面性能对模具的工作性能和使用寿命至关重要。这些表面性能指:耐磨损性能、耐腐蚀性能、摩擦系数、疲劳性能等。这些性能的改善,单纯依赖基体材料的改进和提高是非常有限的,也是不经济的,而通过表面处理技术,往往可以收到事半功倍的效果,这也正是表面处理技术得到迅速发展的原因。

模具的表面处理技术,是通过表面涂覆、表面改性或复合处理技术,改变模具表面的形态、化学成分、组织结构和应力状态,以获得所需表面性能的.系统工程。从表面处理的方式上,又可分为:化学方法、物理方法、物理化学方法和机械方法。虽然旨在提高模具表面性能新的处理技术不断涌现,但在模具制造中应用较多的主要是渗氮、渗碳和硬化膜沉积。

渗氮工艺有气体渗氮、离子渗氮、液体渗氮等方式,每一种渗氮方式中,都有若干种渗氮技术,可以适应不同钢种不同工件的要求。由于渗氮技术可形成优良性能的表面,并且渗氮工艺与模具钢的淬火工艺有良好的协调性,同时渗氮温度低,渗氮后不需激烈冷却,模具的变形极小,因此模具的表面强化是采用渗氮技术较早,也是应用最广泛的。

模具渗碳的目的,主要是为了提高模具的整体强韧性,即模具的工作表面具有高的强度和耐磨性,由此引入的技术思路是,用较低级的材料,即通过渗碳淬火来代替较高级别的材料,从而降低制造成本。

硬化膜沉积技术目前较成熟的是CVD、PVD。为了增加膜层工件表面的结合强度,现在发展了多种增强型CVD、PVD技术。硬化膜沉积技术最早在工具(刀具、刃具、量具等)上应用,效果极佳,多种刀具已将涂覆硬化膜作为标准工艺。模具自上个世纪80年代开始采用涂覆硬化膜技术。目前的技术条件下,硬化膜沉积技术(主要是设备)的成本较高,仍然只在一些精密、长寿命模具上应用,如果采用建立热处理中心的方式,则涂覆硬化膜的成本会大大降低,更多的模具如果采用这一技术,可以整体提高我国的模具制造水平。

模具材料的预硬化技术

模具在制造过程中进行热处理是绝大多数模具长时间沿用的一种工艺,自上个世纪70年代开始,国际上就提出预硬化的想法,但由于加工机床刚度和切削刀具的制约,预硬化的硬度无法达到模具的使用硬度,所以预硬化技术的研发投入不大。随着加工机床和切削刀具性能的提高,模具材料的预硬化技术开发速度加快,到上个世纪80年代,国际上工业发达国家在塑料模用材上使用预硬化模块的比例已达到30%(目前在60%以上)。我国在上世纪90年代中后期开始采用预硬化模块(主要用国外进口产品)。

模具材料的预硬化技术主要在模具材料生产厂家开发和实施。通过调整钢的化学成分和配备相应的热处理设备,可以大批量生产质量稳定的预硬化模块。我国在模具材料的预硬化技术方面,起步晚,规模小,目前还不能满足国内模具制造的要求。

采用预硬化模具材料,可以简化模具制造工艺,缩短模具的制造周期,提高模具的制造精度。可以预见,随着加工技术的进步,预硬化模具材料会用于更多的模具类型。 模具热处理是保证模具性能的重要工艺过程。它对模具的如下性能有着直接的影响。

模具的制造精度:组织转变不均匀、不彻底及热处理形成的残余应力过大造成模具在热处理后的加工、装配和模具使用过程中的变形,从而降低模具的精度,甚至报废。

模具的强度:热处理工艺制定不当、热处理操作不规范或热处理设备状态不完好,造成被处理模具强度(硬度)达不到设计要求。

模具的工作寿命:热处理造成的组织结构不合理、晶粒度超标等,导致主要性能如模具的韧性、冷热疲劳性能、抗磨损性能等下降,影响模具的工作寿命。

模具的制造成本:作为模具制造过程的中间环节或最终工序,热处理造成的开裂、变形超差及性能超差,大多数情况下会使模具报废,即使通过修补仍可继续使用,也会增加工时,延长交货期,提高模具的制造成本。

正是热处理技术与模具质量有十分密切的关联性,使得这二种技术在现代化的进程中,相互促进,共同提高。20世纪80年代以来,国际模具热处理技术发展较快的领域是真空热处理技术、模具的表面强化技术和模具材料的预硬化技术。

;

C. 影响模具使用寿命的因素主要有哪些

影响冲模寿命的因素是多方面的。下面就冲模的设计、制造及使用等方面综合分析冲模寿命的影响因素,并捉出相应的改善措施。1、冲压设备冲压设备(如压力机)的精度与刚性对冲模寿命的影响极为重要。冲压设备的精度高、刚性好,冲模寿命大为提高。例如:复杂硅钢片冲模材料为Crl2MoV,在普通开式压力机上使用,平均复磨寿命为1-3万次,而新式精密压力机上使用,冲模的复磨寿命可达6~12万次。尤其足小间隙或无间隙冲模、硬质合金冲模及精密冲模必须选择精度高、刚性好的压力机,否则,将会降低模具寿命,严重者还会损坏棋具。2、模具设计(1)模具的导向机构精度。准确和可靠的导向,对于减少模具工作零件的磨损,避免凸、凹模啃伤影响极大,尤其是无间隙和小间隙冲裁模、复合模和多工位级进模则更为有效。为提高模具寿命,必须根据工序性质和零件精度等要求,正确选择导向形式和确定导向机构的精度。一般情况下,导向机构的精度应高于凸、凹模配合梢度。(2)模具(凸、凹模)刃口几何参数。凸、凹模的形状、配合间隙和圆角半径不仅对冲压件成形有较大的影响,而且对于模具的磨损及寿命也影响很大。如模具的配合间隙直接影响冲裁件质量和模具寿命。精度要求较高的,宜选较小的间隙值;反之则可适当加大间隙,以提高模具寿命。3、冲压工艺(1)冲压零件的原材料。实际生产中,由于外压零件的原材料厚度公差超差、材料性能波动、表面质量较差(如锈迹)或不干净(如油污)等,会造成模具工作零件磨损加剧、易崩刃等不良后果。为此,应当注意:①尽可能采用冲压工艺性好的原材料,以减少冲压变形力;②冲压前应严格检查原材料的牌号、厚度及表面质量等,并将原材料擦拭干净,必要时应清除表面氧化物和锈迹;③根据冲压工序和原材料种类,必要时可安排软化处理和表面处理,以及选择合适的润滑剂和润滑工序。(2)排样与搭边。不合理的往复送料排样法以及过小的搭边值往往会造成模具急剧磨损或凸、凹模啃伤。因此,在考虑提高材判利用毕的同时,必须根据零件的加工批量、质量要求和模具配合间隙,合理选择排样方法和搭边值,以提高模具寿命。4、模具材料模具材料对模具寿命的影响是材料种类、化学成分、组织结构、硬度和冶金质量等诸冈索的综合反映。不同材质的模具寿命往往不同。为此,对于冲模工作零件材料提出两项基本要求:①材料的使用性能应具有高硬度(58~64HRC)和高强度,并具有高的耐磨性和足够的韧性,热处理变形小,有一定的热硬性;②工艺性能良好。冲模工作零件加工制造过程一般较为复杂。因而必须具有对各种加工工艺的适应性,如可锻性、可切削加工性、淬硬性、淬透性、淬火裂纹敏感性和磨削加工性等。通常根据冲压件的材料特性、生产批量、精度要求等,选择性能优良的模具材料,同时兼顾其工艺性和经济性。5、热加工工艺实践证明。模具的热加工质量对模具的性能与使用寿命影响甚大。从模具失效原因的分析统计可知,因热处理不当所引发模具失效"事故"约占40%以上。模具工作零件的淬火变形与开裂,使用过程的早期断裂,均与摸具的热加工工艺有关。(1)锻造工艺,这是模具工作零件制造过程中的重要环节。对于高合金工具钢的模具,通常对材料碳化物分布等金相组织提出技术要求。此外,还应严格控制锻造温度范围,制定正确的加热规范,采用正确的锻造力法,以及锻后缓冷或及时退火等。(2)预备热处理。应视模具工作零件的材料和要求的不同分别采用退火、正火或调质等预备热处理工艺,以改善组织,消除锻造毛坯的组织缺陷,改善加工工艺性。高碳合金模具钢经过适当的预备热处理可消除网状二次渗碳体或链状碳化物,使碳化物球化、细化,促进碳化物分布均匀性。这样有利于保证淬火、回火质量,提高模具寿命。(3)淬火与回火。这是模具热处理中的关键环节。若淬火加热时产生过热,不仅会使工件造成较大的脆性,而且在冷却时容易引起变形和开裂,严重影响模具寿命。冲模淬火加热时特别应注意防止氧化和脱碳,应严格控制热处理工艺规范,在条件允许的情况下,可采用真空热处理。淬火后应及时回火,并根据技术要求采用不同的回火工艺。(4)消应力退火。模具工作零件在粗加工后应进行消应力退火处理,具目的是消除粗加工所造成的内应力,以免淬火叫产生过大的变形和裂纹。对于精度要求高的模具,在磨削或电加工后还需经过消应力回火处理,有利于稳定模具精度,提高使用寿命。6、加工表面质量模具工作零件加上表面质量的优劣对于模具的耐磨性、抗断裂能力及抗粘着能力等有着十分密切的关系,直接影响模具的使用寿命。尤其是表面粗糙度值对模具寿命影响很大,若表面粗糙度值过大,在工作时会产生应力集中现象,并在其峰、谷间容易产生裂纹,影响冲模的耐用度,还会影响工件表面的耐蚀性,直接影响冲模的使用寿命和精度,为此,应注意以下事项:①模具工作零件加工过程中必须防止磨削烧伤零件表面现象,应严格控制磨削工艺条件和工艺方法(如砂轮硬度、粒度、冷却液、进给量等参数);②加工过程中应防止模具工作零件表面留有刀痕。夹层、裂纹、撞击伤痕等宏观缺陷。

D. 表面处理对冲压模具的寿命有什么影响

表面处理能显著提高模具工作部分的光洁度硬度,耐磨性,对模具寿命大有好处。

E. 影响模具寿命的因素有什么

1,模具钢材中夹杂物的含量增加:模具钢中的夹杂物是引起模具内部产生裂纹的起源,特别是脆性氧化物和硅酸盐等夹杂物,在热加工中会时不时的发生塑性变形,由此会引起脆性的碎裂形成微裂纹,当我们在进一步的热处理和使用中,该裂纹会进一步的引起模具的开裂。
2,碳化物分布不均匀引起的失效:我们用的注塑模具钢材中,有大量的共晶碳化物,当我们进行模具钢材锻造时,锻造比小或者是浇注温度控制不适当,在钢材中容易呈带状或者是网状碳化物的偏移,这样会使模具零件在淬火时出现沿着带状或者是网状碳化物严重的部位出现裂纹,当我们在使用的过程中内部裂纹会进一步的扩展进而引起失效,或者是出现断裂的现象。

F. 影响模具精度和寿命的因素有哪些呢

制作模具的材料如果硬度、耐磨性、抗冲击性能、耐疲劳性能、热处理淬透性能好的话,可以大大的延长模具的使用寿命。
制作模具的材料的好坏,合理的模具结构,是否进行规范的热处理,以及正确的使用、操作,都是影响模具使用寿命的主要因素。

G. 表面处理如何影响模具使用寿命

表面处理肯是可以延长模具使用寿命,防止模式,生锈腐烂,大多数模具厂商都会使用发黑基础对模具进行发黑保护

H. 影响冲模模具寿命的因素都有哪些原因

冲模模具生产中的失效形式主要有:冲模失效形式主要为磨损失效、变形失效、裂纹失效和压伤失效等。由于冲压形态不同,工作条件不同,影响冲模寿命的因素是多方面的。下面就冲模的设计、制造及使用等方面进行综合分析,并提出相应的改进措施。
1、模具开裂有以下主要原因
1.1根据要求合理选择材料,这是最关建的第一步。
1.2当材质决定后,金相组织是决定性能的关建。
1.3为了保证良好的金相组织,应从以下几个方面加强控制:
1.3.1制定合理的锻造工艺。
1.3.2锻后热处理工艺要符合实际要求,将金相组织控制到最佳状态。
1.3.3成品热处理工艺的制定,除淬火回火外,还有化学热处理及冰冷处理等。
1.4模具研磨平面度及粗糙度不合格。
1.5模具的设计强度要充分满足使用要求。
1.6模具结构要合理。
1.7对线切割的模具,要采取有效的处理措施。
1.8脱料不顺生产前无退磁处理,无退料屑等。
1.9落料不顺组装模时无漏屑或滚屑而堵。
1.10生产:叠片冲压,定位不好等。
2、设备
冲压设备的精度与刚性对冲模寿命的影响极为重要。冲压设备的精度高、刚性好,冲模寿命大为提高。例如:复杂硅钢片冲模材料为Crl2MoV,在普通开式压力机上使用,平均复磨寿命为1~3万次,而新式精密压力机上使用,冲模的复磨寿命可达6~12万次。尤其是小间隙冲模、硬质合金冲模及精密冲模必须选择精度高、刚性好的设备,否则,将会降低模具寿命,严重者还会损坏模具。
3、模具设计
3.1模具的导向机构精度
准确和可靠的导向,对于减少模具工件的磨损,避免凸、凹模压伤影响极大,尤其是小间隙冲裁模、复合模和多工位级进模则更为有效。为提高模具寿命,必须根据工序性质和零件精度等要求,正确选择导向形式和确定导向机构的精度。一般情况下,导向机构的精度应高于凸、凹模配合精度。
3.2模具(凸、凹模)刃口几何参数
形状、配合间隙和圆角半径不仅对冲压件成形有较大的影响,而且对于模具的磨损及寿命也影响很大。如模具的配合间隙直接影响冲裁件质量和模具寿命。精度要求较高的,宜选较小的间隙值;反之则可适当加大间隙,以提高模具寿命。
4、冲压工艺
4.1冲压零件的原材料。
实际生产中,由于外压零件的原材料厚度公差超标、材料性能波动较大、表面质量较差或洁净度差等,都会造成模具磨损加剧、易崩刃等不良后果。
4.1.1尽可能采用冲压工艺性好的原材料,以减少冲压变形力;
4.1.2冲压前应严格检查原材料的牌号、厚度及表面质量等,并将原材料擦拭干净,必要时应清除表面氧化物和锈迹;
4.1.3根据冲压工序和原材料种类,必要时可安排软化处理和表面处理,以及选择合适的润滑剂和润滑工序。
4.2排样与搭边。
不合理的往复送料排样法以及过小的搭边值往往会造成模具急剧磨损或凸、凹模压伤。因此,在考虑提高材料利用率的同时,必须根据零件的加工批量、质量要求和模具配合间隙,合理选择排样方法和搭边值,以提高模具寿命。
5、模具材料
正确选材是提高模具寿命的关键。如:化学成分、金相组织、硬度和冶金质量等。不同材质的模具寿命往往不同,为此,对于冲模材料应严格控制以下两点。
5.1材料的使用性能应具有高硬度和高强度,并具有高的耐磨性和足够的韧性,热处理变形小,有一定的热硬性;
5.2工艺性能良好。冲模在加工制造过程一般较为复杂.因而必须具有对各种加工工艺的适应性,如可锻造性、切削加工性、淬硬性、淬透性、低的淬火裂纹敏感性和良好的磨削加工性等。通常根据冲压件的材料特性、生产批量、精度要求等,选择性能优良的模具材料,同时兼顾其工艺性和经济性。
6、热加工工艺
实践证明.模具的热加工质量对模具的性能与使用寿命影响甚大。从模具失效原因的分析统计可知,因热处理不当所引发模具失效“事故”约占45%以上。模具的淬火变形与开裂,使用过程的早期断裂,多与摸具的热加工工艺有关。
6.1锻造工艺。这是模具制造过程中的重要环节。对于高合金工具钢的模具,通常对材料碳化物分布等金相组织提出要求。此外,还应严格控制锻造温度范围,制定正确的加热规范,采用正确的锻造方法,以及锻后缓冷或及时退火等。
6.2预先热处理。视模具的材料和要求的不同分别采用退火、调质等预备热处理工艺,以改善组织,消除锻造、毛坯的组织缺陷,改善加工性。高碳合金模具钢经过适当的预先热处理可消除网状碳化物,使碳化物球化、细化,促进碳化物分布均匀性。这样有利于保证淬火、回火质量,提高模具寿命。
6.3淬火与回火。这是模具热处理中的关键环节。若淬火加热时产生过热,不仅会使工件造成较大的脆性,而且在冷却时容易引起变形和开裂,严重影响模具寿命。冲模淬火加热时特别应注意防止氧化和脱碳,应严格控制热处理工艺规范,在条件允许的情况下,可采用真空热处理。淬火后应及时回火,并根据技术要求采用不同的回火工艺。
6.4消除应力退火。模具在粗加工后应进行消除应力退火处理,目的是消除粗加工所造成的内应力,以免淬火产生过大的变形或裂纹。对于精度要求高的模具,在磨削或电加工后还需经过消除应力回火处理,有利于稳定模具精度,提高使用寿命。
7、加工表面质量
模具表面质量的优劣对于模具的使用寿命有着十分密切的关系。尤其是表面粗糙度对模具寿命影响很大,若表面粗糙度过大,在工作时会产生应力集中现象,并容易在其微细尖角处产生裂纹,影响冲模的耐用性,还会影响工件表面的耐蚀性,直接影响冲模的使用寿命和精度。
7.1模具在加工过程中必须防止磨削过热退火现象,应严格控制磨削工艺条件和工艺方法(如砂轮硬度、粒度、冷却液、进给量等参数);
7.2加工过程中应防止模具表面留有刀痕,夹层、裂纹、撞击伤痕等宏观缺陷。这些缺陷的存在会引起应力集中,成为断裂的根源,造成模具早期失效;
7.3采用磨削、研磨和抛光等精加工和精细加工,提高表面粗糙度,提高模具使用寿命。
8、表面强化处理
为提高模具性能和使用寿命,模具表面强化处理应用越来越广。常用的表而强化处理方法有:氮碳共渗、渗氮、渗硼、渗钒、BRN处理以及化学气相沉积法(CVD)、物理气相沉积法(PVD)和表面浸镀碳化物法(TD)等。提高其耐疲劳强度,有利于模具寿命的提高。
9、线切割变质层的控制
冲模刃口多采用线切割加工。由于线切割加工的热效应和电解作用,使模具加工表面产生一定厚度的变质层,造成表面硬度降低,出现显微裂纹等,致使线切割加工的冲模易发生早期磨损,直接影响模具冲裁间隙的保持及刃口容易崩刃,缩短模具使用寿命。因此,在线切割加工中应选择合理的技术参数,尽量减少变质层深度,去掉变质层。
10、正确使用和合理维护
为了保护正常生产,提高冲压件质量,降低成本,延长冲模寿命,必须正确使用和合理维护模具,严格执行冲模“三检查”制度(使用前检查,使用过程中检查与使用后检查),并做好冲模与维护检修工作。其主要工作包括模具的正确安装与调试;严格控制凸模进入凹模深度;控制校正弯曲、冷挤、整形等;及时复磨、研光其刃口;注意保持模具的清洁和合理的润滑等。模具的正确使用和合理维护,对于提高摸具寿命事关重大。
总之,提高模具寿命应在设计、制造、使用和维护全过程中,应用先进制造技术和实行全面质量管理,是提高模具寿命的有效保证,并且致力于发展专业化生产,加强模具标准化工作,除零件标准化外,还有设计参数标准化、组合形式标准化、加工方法标准化等,不断提高模具设计和制造水平,有利于提高模具寿命。

I. 镭射强化技术提高模具使用寿命

摘 要:介绍了用于模具表面的镭射强化加工系统和镭射强化工艺方法,讨论了镭射强化模具表面的硬化层深度和耐磨效能与镭射强化工艺引数之间的关系,采用镭射强化技术能大幅度提高模具的使用寿命。

关键词:镭射强化;模具;磨损/寿命

随着我国汽车、家电工业的迅猛发展,对模具工业提出了更高的要求。如何提高模具的加工质量和使用寿命,一直是人们不断探索的课题。采用表面强化处理是提高模具质量和使用寿命的重要途径,它对于改善模具的综合性能、大幅度降低成本、充分发挥传统模具的潜力,具有十分重要的意义。常用的模具表面强化处理工艺有化学热处理***如渗碳、碳氮共渗等***、表面复层处理***如堆焊、热喷涂、电火花表面强化、PVD和CVD等***、表面加工强化处理***如喷丸等***。这些方法大多工艺较为复杂,处理周期较长,处理后存在较大变形。近年来,随着大功率镭射器的出现及镭射加工技术在工业上的应用日趋广泛、成熟,为模具表面的强化提供了一种新的技术途径。

1 激光表面强化处理方法

镭射用于表面处理的方法多,其中包括:镭射相变硬化***LTH***,激光表面熔化处理***LSM***,激光表面涂覆及合金化***LSC/LSA***,激光表面化学气相沉积***LCVD***,镭射物理气相沉积***LPVD***,镭射冲击***LSH***和镭射非晶化等,其中已被研究用于提高模具寿命的方法有镭射相变硬化和激光表面熔覆和合金化,本文主要讨论利用镭射相变硬化技术提高模具寿命的机理和方法。

镭射相变硬化***镭射淬火***是利用镭射辐照到金属表面,使其表面以很高的升温速度迅速达到相变温度而形成奥氏体,当镭射束离开后,利用金属本身热传导而发生“自淬火”,使金属表面发生马氏体转变。与传统淬火方法相比,镭射淬火是在急热、急冷过程中进行的,温度梯度高,从而在表面形成了一层硬度极高的特殊淬火组织,如晶粒细化、高位错密度等。其淬火层的硬度比普通淬火的硬度还高15%~20%。淬硬层深度可达0.1~2.5mm,因而可大大提高模具的耐磨性,延长模具的使用寿命。

2 镭射强化加工系统的组成

图1为一个具有多轴联动的镭射强化加工系统工作原理示意图。它由三部分组成:第一部分为镭射器系统,由镭射头、激励电源、冷却系统和谐振腔引数变换装置组成;第二部分为光束传输与变换装置,把镭射束按加工要求引导到待处理零件表面,同时对镭射束进行空间强度分布的变换,以满足对模具表面不同受力部位进行有效的强化处理。光束经变换后即可在模具表面产生所需的强化单元,通过多轴联动的数控系统即可对模具的三维曲面进行可控的、快速和有效的强化处理;第三部分为计算机数控系统,控制镭射工作头和数控工作台等多轴运动,其镭射束相对于工件的运动轨迹决定了强化的带形状,以实现复杂模具表面的镭射强化处理。

3 镭射强化处理工艺

3.1 工件表面预处理涂层

当镭射器确定后,金属材料对镭射的吸收能力主要取决于其表面状态。一般需镭射处理的金属材料表面都经过机械加工,表面粗糙度值很小,其反射率可达 80%~90%,使大部分镭射能量被反射掉。为了提高金属表面对镭射的吸收率,在镭射热处理前要对材料表面进行表面处理***常称黑化处理***,即在需要镭射处理的金属表面涂上一层对镭射有较高吸收能力的涂料。

表面预处理的方法包括磷化法、提高表面粗糙度法、氧化法、喷***刷***涂料法、镀膜法等多种方法,其中较为常用的是磷化法和喷***刷***涂料法。常用的涂料骨料有石墨、炭黑、磷酸锰、磷酸锌、水玻璃等。也有直接使用碳素墨汁和无光漆作为预处理涂料的。对于有些低碳钢材料,在其表面用炭黑粉末处理,在进行镭射淬火时可起渗碳作用。我们采用上海光机所研制的黑化溶液***86-1型***,其处理方法简单,可直接喷刷在工件表面,镭射吸收率达90%以上。

3.2 工艺引数优化

镭射相变硬化工艺引数主要有镭射器输出功率P,光斑大小D及扫描速度v,在其它条件一定的条件下,镭射硬化层的深度H与P、D、v有如下关系:H=P/***D.v***。为了得到最优工艺引数,基本方法是根据已有成功的资料,确定一个工艺引数范围,再以P、D、v三个因子,各取三个水平,做出正交试验表在试件上进行试验研究。图2为汽车尾灯支架拉深模具所采用的材料Cr-Mo铸铁,在不同扫描速度下,镭射功率与硬化层深的关系曲线。图3为不同的镭射功率下,扫描速度与硬化层的关系曲线。图示表明:在一般情况下,镭射功率越高,硬化层越深;扫描速度越大,硬化层越浅。图4为在镭射功率 P=1200W,扫描速度v=15mm/s,光斑直径D=4.5mm的工艺引数条件下,淬火层的硬度及硬化层深之间的关系。从中可看出,经镭射处理后材料表面的硬度有较为显著的提高。

4 硬化层残余应力和耐磨效能

在镭射硬化处理过程中,金属材料表面组织结构的变化及表面相对于材料内部温差的产生和消失,必将产生残余应力。残余应力的大小和分布状况对模具的实用效能有很大影响,镭射硬化产生的残余应力沿淬硬层深的分布情况如图5。由图5可见,镭射相变硬化在模具表面产生较大的残余压应力,能有效地防止疲劳裂纹的产生,提高模具的疲劳寿命。

模具表面的耐磨效能与材料的显微结构、晶粒大小、硬度高低、表面状态等多种因素有关,而这些因素又受处理工艺引数的影响,因而镭射强化的工艺引数直接影响模具的耐磨效能。图6和图7为镭射功率及扫描速度对35CrMn钢耐磨效能的影响。由图可见,在一定范围内,当扫描速度一定时,提高功率耐磨性有所增加;在功率一定时,扫描速度的提高也有助于提高耐磨性。图8为42CrMo材料经镭射处理***P=1200W,v=55mm/s,D=3.5mm***后与常规处理之间的磨损对比,可见采用镭射强化技术能大大提高材料的耐磨效能。

5 结论

通过对几种不同的模具材料所进行的镭射强化处理,并与实际工作情况进行检查对比,表明采用镭射强化技术能大幅度提高模具的使用寿命,而冷冲模的强化效果更为明显。如对T8A钢制造的冲头和Cr12Mo钢制造的凹模进行镭射硬化处理,镭射硬化层为0.15mm,硬度为1200HV,使用寿命明显增加,由冲压2.5万件提高到10万件,即寿命提高3~4倍。采用镭射强化技术,其优越性在于:

***1***可根据模具的形状特点、使用要求在指定区域内进行,且对表面质量没有任何损伤。经镭射处理后的模具,不需后续加工即可直接投入生产使用,从而降低了模具的制造成本。

***2***通过编制专用的镭射强化处理软体,可实现镭射处理工艺引数的计算机自动优化、处理过程的计算机模拟模拟和实时监控及镭射处理后表面组织结构和效能的计算机预测,实现模具的复杂形状和人工智慧化的表面处理。

***3***采用镭射熔覆和合金化等技术,可在廉价金属材料表层得到任意成分的合金和相应的微观组织,从而获得良好的综合机械效能,改善和提高材料表面的耐磨、耐蚀和耐热效能。这些技术用于报废模具的修复和强化,具有较为广泛的市场前景

参考文献: [1]蒋昌生,蒋勇.模具表面强化处理.锻压技术,1993***4*** [2]陈大明,徐有容.模具钢表面镭射熔覆硬面合金层改性研究.金属热处理,1998***1*** [3]陈光南.镭射热处理新技术及其应用.金属热处理,1998***7*** [4]李儒荀,平雪良.连续镭射强化模具刃口的工艺研究.电加工,1995***6*** [5]关振中.镭射加工工艺手册.北京:中国计量出版社,1998. [6]刘江龙,邹至荣.高能束热处理.北京:机械工业出版社,1997

J. 何谓注塑模寿命,其影响因素是什么

所谓注塑模寿命,是指注塑模在保证产品质量的前提下,所能加工的塑件的总数量,它包括工作面的多次修磨和易损件更换后的寿命。一般在注塑模的设计阶段就应明确该模具所适用的生产塑件的总件数,即模具的设计寿命。任何模具总会损坏,总会寿命终止,但其损坏的形式不同。总的来说,工作表面损坏的形式有:摩擦损坏、疲劳损坏、塑性变形、开裂、咬伤等。
(2) 影响注塑模寿命的因素
注塑模寿命的终结,与多种因素有关,影响模具寿命的主要因素有以下几个:
1) 模具材料:模具寿命与其材料关系很大,生产的数量越大,工作时所受的载荷越大对材料的要求也越高,对此,应选用承载能力强、服役寿命长的高性能模具材料。但是,需要注意的是,模具材料在其生产成本中约占25%~ 30%,因此不能一味选用好材料,对承载不大的模具零件可用稍差的材料。
2) 模具结构。模具的结构情况对模具寿命关系很大,合理的结构有助于提高模具的承载能力,提高模具寿命。如采用可靠的导向机构,可有效地避免合模时模具的咬伤;又如采用圆角过渡的避免应力集中的结构,可使模具能承受强大的成型压力,因为模具最易从应力集中处开裂。因此,对模具结构的选择 和处理是否适当,对模具的寿命影响非常大。
3) 模具加工质量。模具的零件很多,加工的方法也不一样,主要有锻造、切削加工,电火花加工、热处理、研磨抛光等。在这些加工中都有可能使零件受伤而累及模具寿命,如电火花加工时冷却失当而产生的显微裂纹;在热处理时因受热不均使零件各处性能不同;锻造时因温度控制不当造成金属组织内部出现裂纹;研磨抛光不够,使零件表面粗糙度过大及残存刀痕等等,上述种种缺陷对模具的耐磨性、抗断裂能力、抗疲劳能力等都会带来显着的影响,从而影响模具的寿命。
4) 模具工作状态。注塑模在工作时,要频繁地经过合模、锁紧、注射、保压、冷却、开模、顶出等工艺过程,在此工作过程,需要保证各个工作机构可靠而轻快灵活地工作。为此,需要使各运动部件无阻碍地运动,并有可靠的润滑,要求操作者经常注意模具的维护和保养,使其处于最佳工作状态。
5) 设备状况。注塑机性能的好坏,对注塑模的寿命有较大影响,注塑模的各种动作,是由注塑机上的相关机构完成的,若是注塑机在合模时加力偏斜, 或是加力过大,或是动作不准确,使得模具发生碰撞或偏心受力,模具就会受到损害,其寿命也会大受影响。

阅读全文

与表面处理如何影响模具的寿命相关的资料

热点内容
方管焊的楼梯草图 浏览:801
不锈钢腐蚀广告牌多少钱 浏览:554
徐州哪里有小口径精密钢管 浏览:170
4mm厚不锈钢板多少钱一吨 浏览:333
钛合金棒的密度多少 浏览:599
罗普斯金和不锈钢哪个好 浏览:320
平板车拉钢板20吨左右什么车型好 浏览:624
pkpm如何如何计算出钢管的量 浏览:556
为什么cdr焊接之后上不了色 浏览:803
做模具的铜什么价格 浏览:691
怎么辨别板上钢筋种类 浏览:493
钢铁雄心4怎么带72个团 浏览:720
梁侧向钢筋怎么设置 浏览:765
10寸模具怎么测量 浏览:858
钢管架立柱的步距是什么意思 浏览:382
用什么工具割不锈钢 浏览:930
金桥308不锈钢焊条多少钱一包 浏览:237
怎么制作迷你小杯子的模具 浏览:824
护栏栏杆怎么算平方 浏览:172
钢材有多少利润 浏览:50