⑴ 冲压模具的设计与制作技巧
冲压模具的设计与制作技巧
模具主要通过所成型材料物理状态的改变来实现物品外形的加工。下面是我整理的冲压模具的设计与制作技巧介绍,大家一起来看看吧。
一、从废料情况看出的信息
废料本质上就是成形孔的反像。即位置相反的相同部位。通过检查废料,你可以判断上下模间隙是否正确。如果间隙过大,废料会出现粗糙、起伏的断裂面和一窄光亮带区域。间隙越大,断裂面与光亮带区域所成角度就越大。如果间隙过小,废料会呈现出一小角度断裂面和一宽光亮带区域。
过大间隙形成带有较大卷边和边缘撕裂的孔,令剖面稍微有一薄边缘突出。太小的间隙形成带稍微卷边和大角度撕裂,导致剖面或多或少地垂直于材料表面。
一个理想的废料应有合理的压塌角和均匀的光亮带。这样可保持冲压力最小并形成一带极少毛刺的整洁圆孔。从这点来看,通过增大间隙来延长模具寿命是以牺牲成品孔质量换取的。
二、模具间隙的选择
模具的间隙与所冲压的材料的类型及厚度有关。不合理的间隙可以造成以下问题:
(1)如间隙过大,所冲压工件的毛刺就比较大,冲压质量差。如果间隙偏小,虽然冲孔的质量较好,但模具的磨损比较严重,大大降低模具的使用寿命,而且容易造成冲头的折断。
(2)间隙过大或过小都容易在冲头材料上产生粘连,从而造成冲压时带料。过小的间隙容易在冲头底面与板料之间形成真空而发生废料反弹。
(3)合理的间隙可以延长模具寿命,卸料效果好,减小毛刺和翻边,板材保持洁净,孔径一致不会刮花板材,减少刃磨次数,保持板材平直,冲孔定位准确。
三、如何提高模具的使用寿命
对用户来讲,提高模具的使用寿命可以大大降低冲压成本。影响模具使用寿命的因素如下:
1、材料的类型及厚度;
2、是否选择合理的下模间隙;
3、模具的结构形式;
4、材料冲压时是否有良好的润滑;
5、模具是否经过特殊的表面处理;
6、如镀钛、碳素氮化钛;
7、上下转塔的对中性;
8、调整垫片的合理使用;
9、是否适当采用斜刃口模具;
10、机床模座是否已经磨损;
四、冲压特殊尺寸孔应注意的问题
(1)最小孔径冲φ0.8——φ1.6范围的冲孔请用特殊冲头。
(2)厚板冲孔时,相对于加工孔径,请使用大一号的模具。注意:此时,若使用通常大小的模具,会造成冲头螺纹的破损。
(3)冲头刃口部分,最小宽度与长度的比例一般不应小于1:10。
(4)冲头刃口部分最小尺寸与板厚的关系。建议冲头刃口部分最小尺寸取板厚的2倍。
五、模具的刃磨
1、模具刃磨的重要性
定期刃磨模具是冲孔质量一致性的保证。定期刃磨模具不仅能提高模具的使用寿命而且能提高机器的使用寿命,要掌握正确的刃磨时机。
2、模具需要刃磨的具体特征
对于模具的刃磨,没有一个严格的打击次数来确定是否需要刃磨。主要取决于刃口的锋利程度。主要由以下三个因素来决定:
(1)检查刃口的圆角,如果圆角半径达到R0.1毫米(最大R值不得超过0.25毫米)就需要刃磨。
(2)检查冲孔质量,是否有较大的毛刺产生?
(3)通过机器冲压的噪声来判断是否需要刃磨。如果同一副模具冲压时噪声异常,说明冲头已经钝了,需要刃磨。
注:刃口边缘部变圆或刃口后部粗糙,也要考虑刃磨。
3、刃磨的方法
模具的刃磨有多种方法,可采用专用刃磨机也可在平面磨床上实现。冲头、下模刃磨的频度一般为4:1,刃磨后请调整好模具高度。
(1)不正确刃磨方法的危害:不正确的刃磨会加剧模具刃口的迅速破坏,致使每次刃磨的打击次数大大缩小。
(2)正确的刃磨方法的益处:定期刃磨模具,冲孔的质量和精度可以保持稳定。模具的刃口就损坏较慢,寿命更长
4、刃磨规则
模具刃磨时要考虑下面的因素:
(1)刃口圆角在R0.1-0.25毫米大小情况下要看刃口的锋利程度。
(2)砂轮表面要清理干净。
(3)建议采用一种疏松、粗粒、软砂轮。如WA46KV
(4)每次的磨削量(吃刀量)不应超过0.013毫米,磨削量过大会造成模具表面过热,相当于退火处理,模具变软,大大降低模具的寿命。
(5)刃磨时必须加足够的冷却液。
(6)磨削时应保证冲头和下模固定平稳,采用专用的工装夹具。
(7)模具的刃磨量是一定的,如果达到该数值,冲头就要报废。如果继续使用,容易造成模具和机器的损坏,得不偿失。
(8)刃磨完后,边缘部要用油石处理,去掉过分尖锐的棱线。
(9)刃磨完后,要清理干净、退磁、上油。
注:模具刃磨量的大小主要取决于所冲压的板材的厚度。
六、冲头使用前应注意
1、存放
(1)用干净抹布把上模套里外擦干净。
(2)存放时小心表面不要出现刮痕或凹痕。
(3)上油防锈。
2、使用前准备
(1)使用前彻底清洁上模套。
(2)查看表面是否有刮、凹痕。如有,用油石去除。
(3)里外上油。
3、安装冲头于上模套时应注意事项
(1)清洁冲头,并给其长柄上油。
(2)在大工位模具上把冲头插入上模套底部,不能用力。不能用尼龙锤。安装时,不能通过旋紧上模套上的.螺栓来固定冲头,只有在冲头正确定位后才能旋紧螺栓。正全科技微信内容真不错,值得关注!
4、安装上模组合入转塔
如果想延长模具使用寿命,上模套外直径和转塔孔之间的间隙要尽可能地小。所以请小心执行下列程序。
(1)清洁转塔孔的键槽和内直径并上油。
(2)调整上模导套的键槽,使之与转塔孔的键吻合。
(3)把上模套导直直地插入塔孔,小心不能有任何倾斜。上模导套应该靠自身重量滑入转塔孔。
(4)如果上模套向一边倾斜,可用尼龙锤之类的软材料工具把它轻轻敲正重复敲击直至上模导套依靠自身重量滑入正确位置。
注意:不能用力于上模导套外直径,只能在冲头顶上用力。不能敲击上模套顶部,以免损坏转塔孔,缩短个别工位使用寿命。
七、模具的检修
如果冲头被材料咬住,取不出来,请按如下所记项目检查。
1、冲头、下模的再刃磨。刃口锋利的模具能加工出漂亮的切断面,刃口钝了,则需要额外的冲压力,而且工件断面粗糙,产生很大的抵抗力,造成冲头被材料咬住。
2、模具的间隙。模具的间隙如果相对板厚选得不合适,冲头在脱离材料时需要很大的脱模力。如果是这个原因冲头被材料咬住,请更换合理间隙的下模。正全科技微信内容真不错,值得关注!!
3、加工材料的状态。材料弄脏了、或者有污垢时,脏东西附着到模具上,使得冲头被材料咬住而无法加工。
4、有变形的材料。翘曲的材料在冲完孔后,会夹紧冲头,使得冲头被咬住。有翘曲的材料,请弄平整后再加工。
5、弹簧的过度使用。会使得弹簧疲劳。请时常注意检查弹簧的性能。
八、注油
油量和注油次数视加工材料的条件而定。冷轧钢板、耐蚀钢板等无锈无垢的材料,要给模具注油,注油点为导套、注油口、刀体与导套的接触面、下模等。油用轻机油。
有锈有垢的材料,加工时铁锈微粉会吸入冲头和导套之间,产生污垢,使得冲头不能在导套内自由滑动,这种情况下,如果上油,会使得锈垢更容易沾上,因此冲这种材料时,相反要把油擦干净,每月分解一回,用汽(柴)油把冲头、下模的污垢去掉,重新组装前再擦干净。这样就能保证模具有良好的润滑性能。
九、模具使用过程中经常出现的问题及解决方法
问题一、板材从夹钳口脱出
原因:模具卸料不完全
解决办法:
1.采用带斜度的冲头
2.在板材上涂润滑液
3.采用重载模具
问题二、模具磨损严重
原因:不合理的模具间隙(偏小)
解决办法:增加模具间隙
原因:上下模座不对中
解决办法:
1.工位调整,上下模对中
2.转塔水平调整
原因:没有及时更换已经磨损的模具导向组件及转塔的镶套
解决办法:更换
原因:冲头过热
解决办法:
1、在板料上加润滑液
2、在冲头和下模之间保证润滑
3、在同一个程序中使用多套同样规格尺寸的模具
原因:刃磨方法不当,造成模具的退火,从而造成磨损加剧
解决办法:
1、采用软磨料砂轮
2、经常清理砂轮
3、小的吃刀量
4、足量的冷却液
原因:步距小
解决办法:
1、增大步距
2、采用桥式步冲
问题三、冲头带料及冲头粘连
原因:不合理的模具间隙(偏小)
解决办法:增加模具间隙
原因:冲头刃口钝化
解决办法:及时刃磨
原因:润滑不良
解决办法:改善润滑条件
问题四、废料反弹
原因:下模问题
解决办法:
1、采用防弹料下模
2、对于小直径孔间隙减少10%
3、直径大于50.00毫米,间隙放大
4、凹模刃口侧增加划痕
原因:冲头方面
解决办法:
1、增加入模深度
2、安装卸料聚胺酯顶料棒
3、采用斜刃口
问题五、卸料困难
原因:不合理的模具间隙(偏小)
解决办法:增加模具间隙
原因:冲头磨损
解决办法:及时刃磨
原因:弹簧疲劳
解决办法:更换弹簧
原因:冲头粘连
解决办法:除去粘连
问题六、冲压噪音
原因:卸料困难
解决办法:
1、增加下模间隙、良好润滑
2、增加卸料力
3、采用软表面的卸料板
原因:板料在工作台上及转塔内的支撑有问题
解决办法:
1、采用球面支撑模具
2、减小工作尺寸
3、增加工作厚度
4、板料厚
5、采用斜刃冲头
十、使用特殊成型工具的注意事项
1、不同型号的机器滑块的行程不同,因此要注意成型模具封闭高度的调整。
2、一定要保证成型充分,因此需要仔细调整,每次调整量最好不要超过0.15毫米,如果调整量过大,容易造成机器的损坏和模具的损坏。
3、对于拉伸成型,请选用轻型弹簧组件,以防止板料的撕裂,或因变形不均匀卸料困难等。正全科技微信内容真不错,值得关注!!
4、在成型模具周围安装球型支撑模具,防止板料倾斜。
5、成型位置应当尽量远离夹钳。
6、成型加工最好放在加工程序的最后来实现。
7、一定要保证板材良好的润滑。
8、定货时注意特殊成型工具的让位问题,如果两个成型的距离比较近,请一定要跟本公司销售员进行沟通。
9、因为成型工具需要较长的卸料时间,因此成型加工时一定要采用低速,最好要有延时。
十一、使用长方形切断刀的注意事项
1、步距尽量大,要大于整个刀具长度的80%。
2、最好通过编程来实现跳跃步冲。
3、建议选用斜刃口模具。
十二、在不超过机器公称力的情况下如何冲孔
生产过程中需要冲大于114.3mm直径的圆孔。如此大的孔会超出机器公称力上限,特别对于高剪切强度材料。通过多次冲孔的方法冲出大尺寸孔可以解决这一问题。使用小尺寸模具沿大圆周长剪切可以降低一半或更多的冲压力,在你已经拥有的模具中可能大部分模具都能做到。
十三、一个冲大圆孔的简易方法
这种凸透镜的模具可被制成你所需半径尺寸。如果孔径超出冲床公称力,我们推荐使用(A)方案。用此模具冲出圆形的周边。如果孔径能在冲床公称力范围内冲成,那么一个放射形模具和一凸透镜模具就能在四次之内冲压出所需的孔而无须旋转模具(B)
十四、最后才向下成形
当选用成形模具时,应避免进行向下成形操作,因为这样会占用太多垂直空间和导致额外的平整或弯曲板材工序。向下成形也可能陷入下模,然后被拉出转塔,然而,如果向下成形是唯一的工艺选择,那么应该把它作为对板材的最后一步处理工序。
十五、防止材料扭曲
如果你需要在板材上冲切大量孔而板材又不能保持平整,成因可能是冲压应力累积。冲切一个孔时,孔周边材料被向下拉伸,令板材上表面拉应力增大下冲运动也导致板材下表面压应力增大。对于冲少量的孔,结果不明显,但随着冲孔数目的增加,拉应力和压应力也成倍增加直到令板材变形。正全科技微信内容真不错,值得关注!!
消除这种变形的方法之一是:每隔一个孔冲切,然后返回冲切剩余的孔。这虽然在板材上产生相同的应力,但瓦解了因同向连续一个紧接一个地冲切而产生拉应力/压应力积聚。如此也令第一批孔分担了第二批孔的部变形效应。
;⑵ 常见塑料模具问题——模具产生裂纹
塑胶制品缺陷与设计注意事项
第一节 气泡(Air Traps)
什么是气泡? 图例 1 .计算机仿真气泡产生的位置。
气泡是空气无法从模具中逃出而残留在成品中而
形成的。 气体被前锋冷料包住而不能从模具间隙,
入子孔,排气孔等地方排出。 气泡位置通常在最
后充填的区域。形成气泡的原因通常是由于在最后
充填区没有排气孔或排气孔不够大。 另一个通常
原因是产品有急速的肉厚变化(肉厚的地方优先充满)。
气泡产生的原因
未逃逸的气体会在产品内形成真空或气泡, 短射了(未充满) ,未排出的气体会在产品内形成气泡,或因为燃烧而在成品表面产生污点。为了除去气泡, 我们可以通过减小注射速度, 增加排气, 或者在恰当的位置设置排气孔来改进充满模式。
在下面的图示中,气泡是由于流长对壁厚比例过大。 在这种情况下,能够通过改变厚度比例或者在气泡形成区设置排气孔(例如,增加顶针)来增加排气。
解决对策
1.在产品设计方面
改变产品设计以减少厚度比例。这样可以将流长的影响减到最小。
2.在模具设计方面
注意排气孔的设置。
在最后充满区增加排气孔。
在零件间特意设置排气孔, 例如, 分型面, 入子孔,顶针孔,滑块。
3.重新设计浇道系统
改变浇道系统能够改变充满模式, 其方法是让最后后充填区位于在恰当排气位置。
4.排气孔足够大 ,要确保在注塑时气体能及时逃逸
然而,要注意的是,排气孔太大就会产生毛边。 推荐排气孔尺寸结晶性塑料是 0.025 毫米 ( 0.001 英吋), 非结晶性塑料是0.038 毫米 ( 0.0015 英吋)。
5.调整成型条件
减小注射速度。
高注射速度会导致气泡的形成。降低注射速度让空气有足够的时间从排气孔中逃逸。
第二节 黑斑点/黑条纹(Black Speck/Black Streaks)
什么是黑斑和黑条纹?
黑斑和黑条纹是成品表面或者某部分出现的黑点或者黑条纹。除了燃烧或者变色更严重的以外,褐色的斑点或者条纹是相同的类型缺陷。
图1 .黑斑点 (左) 和黑条纹(右)。
黑斑和黑条纹是由塑料受污染或者材料加热过分的 (裂解, 燃烧)产生。
塑料的裂解
材料因过分加热而裂解使成品产生黑条纹。 在加热过程中,由于料筒和螺杆表面有划痕或粗糙表面阻止了塑料的流动,材料加热时间过长而烧焦或裂解,引起黑斑和黑条纹。
图 2 .不合适的成型条件导致材料的裂解,成品中产生黑条纹。
空气或材料的污染, 例如肮脏废料, 添加剂材料, 不同颜色材料或者低熔化点材料, 通常会导致黑斑点和黑条纹。 空气中的尘埃也会在成品表面上产生黑斑点。
同样的原因还会导致其它缺陷,例如:
产品脆化、烧焦痕、变色。
解决对策
1.小心地运用材料
1).确信材料没有污染, 例如肮脏的回收物混进原料。
2).盖上漏斗及盛原料箱子的盖子。 空气和灰尘会污染原料, 导致黑斑产生。
2.改变模具设计
1).清洁顶针和滑块。滑块和顶针上的油脂或润滑剂会导致产品上产生黑条纹。
2).改进排气系统。 如果最后充填区发现黑斑, 他们是很可能是因为排气系统不畅通而产生的。未排出的气体被压缩而燃烧导致黑斑。
3).清洁流道并保证流道无划痕,流道中残留的脏物会导致这些缺陷。
4).成型前清洁模具。
3.选择恰当的成型机
1).为不同的模具选择恰当的成型机。
一般射出量应该在成型机注射容量的百分之 20 和 80 之间。 对于热敏感的材料, 这个范围更小。计算机仿真成型能够帮助我们为选择合适的成型机。这样可以避免塑料在料桶中停留过长时间。
2).检查模具表面是否有擦伤或凹坑而阻止塑料流动。它能导引材料变得过热而燃烧。
3).检查是否有加热系统导致局部过热或温控系统有故障。
4.调整成型条件
降低料桶和喷嘴的温度,过高的温度会导致塑料的裂解。
5.清洁成型机
由料筒或者螺杆表面的污染可能产生黑条纹。 当用两种材料成型时, 旧材料可能没从料桶完全清洗以后,在第二种材料成型时形成黑斑或黑条纹。
6.避免有黑斑和黑条纹的产品再利用
这样产品再利用会导致进一步的污染, 除非把他们将用作以黑的产品或者这样的缺陷是可接受的。
第三节 脆化(Brittleness)
什么是的脆化?
脆化的产品有破裂或者折断的趋势。材料退化而使其分子链变短导致脆化产生 (分子量变小) 。 结果, 产品的物理完整性比一般的小得多。
图 1 .裂解的产品容易脆化和破裂。
脆化的原因 同样的原因还会产生其它缺陷:
由材料裂解导致脆化 黑斑点/ 黑条纹
不恰当的干燥条件 烧焦
不恰当温度设置 变色
不恰当流道及浇口
不恰当成型机
熔接线
解决对策
1.调整材料准备过程条件
(1)在成型前设置恰当干燥条件
过度的干燥或过高的干燥温度会导致材料的脆化例如几天的干燥。过分的干燥会将塑料中的易挥发的成分挥发掉或者使它变得更敏感,分子重量减少会使这个材料裂解。 材料供给商能够为专门材料提供最佳条件干燥条件。
(2)减少二次材料。太多的二次料会导致产品脆化。
(3)不适宜的处理会将高强度材料变成低强度材料, 低强度材料更易于脆化。
改变型设计。
2.扩大流道及浇口
(1)局限性的浇口,流道甚至产品设计会导致额外的剪切热,使材料加热过渡而裂解。
(2)选择一个恰当成型机
为了得到更好的熔胶温度就要找到恰当的成型机。材料供给商能够提供正确的成型机信息来避免不恰当或过高的加热温度而导致材料裂解。
3.调整成型条件
(1)降低料筒温度和喷嘴的温度。
如果料筒温度和喷嘴温度太高, 料筒中的材料过分加热, 导致材料裂解。
降低背压, 螺杆转速, 或者注射的速度以及剪切热等会导致材料裂解的条件。
(2)如果熔接线很明显,可以在保证材料不因过热而裂解的前提下,最大限度的提高成型温度和注塑压力。
第四节 烧焦(Burn Marks)
什么是烧焦?
烧焦是在最后填充区和空气聚集区出现的小黑斑。
外形 1 .烧焦.
烧焦的原因:
1.排气不良
如果注射速度或者注射压力太高, 浇注系统和模穴中的空气不能在短时间内排出,就会产生烧焦现象。 当流长过长时,排气不良,会出现气泡。然而,当压力和温度过高时,就会导致材料裂解,在最后填充区和难于成型区产生烧焦现象。
2.材料裂解
裂解的材料随熔胶流动,最后出现在排气槽附近或成品表面而产生烧焦现象。
引起材料裂解的原因有:
1).熔胶温度过高
2).螺杆转速过高
错误的温度设置,热感应片及温控系统的故障。
如果在成型期间螺杆速度太高, 产生过多的摩擦热,使材料裂解。
3).流动路径不畅
过小的主流道,分流道,浇口,会给熔胶带来额外的剪切热,使材料过分加热, 产生材料裂解。
同样的原因还会导致其它缺陷:
黑斑/黑条纹、脆化、变色
解决对策
1.改变模具设计
1).设置充分的排气系统。
在最后填充区和难于成型区的排气尤其重要。推荐排气孔尺寸结晶性塑料是 0.025 毫米 ( 0.001 英吋), 非结晶性塑料是0.038 毫米 ( 0.0015 英吋)。
2).增加浇注系统(包括主流道,分流道,浇口)尺寸。
过小的主流道,分流道,浇口,会给熔胶带来额外的剪切热,使材料过分加热, 产生材料裂解。
2.调整成型条件
通过避免在成型过程中产生附加热来减小烧焦的可能性:
1).减小注射压力。
2).减小注射速度。
3).减小螺杆旋转速度。
4).减小料筒温度。
5).检查料筒和喷嘴上加热片,校准热感应片。
第五节 表面剥离(Delamination)
什么是表面剥离?
表面剥离是成品表面成片状薄层裂痕的现象。
图1 .成品表面剥离现象。
表面剥离的原因
引起表面剥离的原因, 包括:
1.不可兼容的材料一起混合使用。 2.成型时使用的材料种类过多。
3.熔胶温度过低。 4.材料湿度过大。 5.流道及浇口不顺畅。
解决对策
1.调整材料准备过程条件。
在成型过程中避免使用过多的回收料。
2.改良模具设计。
使流道及浇口顺畅。
锋利角落会使熔胶分流而导致表面剥离发生。
3.调整成型条件。
1).避免使用超出材料供货商提供的合理成型条件。
超出材料供货商提供的成型条件会导致表面剥离的发生。你必须修正顶出系统来排除解决这些缺陷。
2).特殊材料在成型前必须根据干燥说明书来干燥。
3).材料湿度过度会导致产品发生表面剥离。
4).提高料筒温度和成型的温度。
如果熔胶温度太低, 形成材料不能熔合在一起而彼此分层,当受到外力作用时就会龟裂。
第六节 尺寸变化(Dimensional Variation)
什么是尺寸变化?
尺度变化(变体)是在成型条件相同的情况下,不同批次或不同产品间存在的尺寸差异。
图1 .尺度变化(变体)是产品不可预料的变化。
引起尺寸变化的原因:
引起尺寸变化的原因:
成型机控制不稳定
狭窄的成型条件
不当的成型条件设置
节流阀破损,老化
材料性质不稳定
解决对策
1.改善成型前的材料准备过程条件
1).材料供货商提供的材料性质不稳定会导致成批产品的尺寸变化。
2).如果材料太湿,材料要进行干燥。
3).限制回收料在原料中的百分比。
不规则粒子能够使熔胶分层, 引起不稳定的产品分尺度变化(变体)。
2.改变模具设计部分
1).如果产品在成型后弯曲变形需要调整浇注系统。
2).为不同的材料设计不同的浇注系统。
用计算机仿真成型来优化浇注系统以使熔胶能顺畅的进入模穴。
3.更换成型机部件
1).如果节流阀破损或过旧,需要更换节流阀。
2).如果熔胶温度不稳定需要更换加热片和热感应片。
4.调整成型条件
1).增加注射和保压压力,确保在填充过程和保压过程将材料送入模腔。
2).增加注射和保压时间,确保填充过程和保压过程将材料送入模腔。
3).确信成型温度甚至是检查冷却系统。
4).在整个成型过程调节适当的螺杆计量,注射量,螺杆转速,背压等。
第七节 鱼眼(Fish Eyes)
什么是鱼眼?
鱼眼是未熔融的塑料随熔胶一起进入模具后出现在成品表面而形成的表面缺陷。
图1。熔胶中混有未熔融的材料产生鱼眼。
产生鱼眼的原因:
1.料筒温度过低
如果料筒温度过低, 不能完全把材料熔化, 这些未熔融的材料混在熔胶中,最后出现在成品表面产生鱼眼。
2.回收料加得过多
回收料的形状和尺寸不规则,不利于排气,同时会引起流动不畅。
3.材料污染
如果高熔度材料混到原材料里, 高熔度材料就会以小颗粒的形式存在,在成型时产生鱼眼。
4.低螺丝旋转速度和回的压力
如果螺杆转速和背压太低,可能没有足够的摩擦加热在注射前将料筒中的材料完全熔化。
解决对策
1. 调整材料准备过程条件
添加回收料的比率取决于产品规格,如果回收料用允许,回收料可以占10%以上。
单独地存储不同材料和并盖好容器的盖子,避免把不同材料混进来。
2. 适当调整成型条件
材料供货商会提供不同材料成型的料筒温度, 背压力, 螺杆转速等相关信息。 如果按照材料供货商推荐的成型条件仍然出现了问题, 尝试下面的调整。
1).提高料筒温度。
2).提高背压使材料得以充分的混合。
3).提高螺杆转速,以得到更多的摩擦热将材料充分的熔化。
第八节 毛边(Flash)
什么是毛边?
毛边就是在分型面,入子孔,排气孔,顶针孔等地方产生的溢料。
图1. 毛边
毛边产生的原因
1.锁模力过小
如果注射成型机的锁模力过小, 不能在成型过程中将模具锁紧,就会产生毛边。
2.模具间隙
如果分型面不能完全接触。分型面有缺陷,成型机选用不当,分型面上有杂物导致分型面间有间隙。
3.成型条件
成型条件不当,例如熔胶温度过高,注塑压力过大,都会产生毛边。
排气系统不当,缺乏足够的排气或排气沟开得过深都会产生毛边。
解决对策
1.调整模具的密封
1).模具建立恰当的密封
模仁或入子存在不应有的间隙就会导致毛边产生。
2).确保模板的强度足够,防止模板在成型时变形
如果在成型过程中模板的有任何变形, 需要增加支撑柱或增加模板厚度。
3).认真检查排气槽的尺寸
推荐排气槽尺寸结晶性塑料是 0.025 毫米 ( 0.001 英吋), 非结晶性塑料是0.038 毫米 ( 0.0015 英吋)。
4).清洁模仁表面
模仁表面残留的杂物使模具不能很好的密封,导致分型面上毛边的产生。
仔细研磨靠破面,保证靠破面在注塑压力下保持高度的密封。
5).调整成型机
成型机机台不平行会导致模板或模仁间密封不够而产生毛边。
选用更大的成型机。锁模力不够会在成型时产生毛边,需要成型机能够提供足够的锁模力。
2.调整成型条件
1).降低料筒温度和喷嘴的温度。
成型温度过高塑料的粘度就会降低而导致毛边的产生。但是值得注意的是:熔胶温度过低就需要更大的锁模力来防止产生毛边。
2).降低注塑压力来降低锁模力。
3).减少注塑量,防止射得过饱而产生毛边。
4).延长注射时间或者降低注射速度。
第九节 流痕(Flow Marks)
什么是流痕?
流痕是成品表面靠近浇口附近出现的环形波纹痕迹。
图1 .流痕
流痕产生的原因:
流痕产生是原因是由于浇口附近熔胶过冷或成型后段保压不够。
通常产生流痕归因于:
1. 成型温度过低。
2. 模温过低。
3. 成型机射速过低。
4. 成型机射压过低。
5. 流道及浇口过小。
通常可以分析发现,由于模温过冷,前锋熔胶遇到冷的模壁和入子先冷却,后面的熔胶推进冷的熔胶也会产生流痕。这在有关“波纹”里有介绍。
解决对策
1.调整模具设计
1).增加冷料井的尺寸,让前期冷料进入冷料井中而不进入模腔。
冷井的长度通常等于流道直径。
2).增大流道及浇口尺寸。
有时过小的流道和浇口会使熔胶过早冷却,在保压阶段熔胶不能继续填充而产生流痕。
3).缩短主流道的长度或使用热浇道。
2.调整成型条件
1).增加注射压力和保压力。 2).增加料筒和喷嘴的温度。 3).增加成型温度。
第十节 迟滞(Hesitation)
什么是迟滞?
迟滞是由于塑料在薄壁处或厚度有急剧变化的区域停滞而产生的缺陷。可以通过改变产品的肉厚或改变进浇点来消除迟滞现象。
图 1 . 由于塑料无法流动导致的迟滞
迟滞产生的原因:
当熔胶进入厚度有变化的模腔,它会先充满肉厚的区域,这些地方阻力较小。 因此, 熔胶会在薄壁处停滞直到别的区域填满后才开始重新流动(参照插图1) 。 然而,如果熔胶停滞的时间过长,就会在停滞处冷却硬化,当凝固的塑料被推到成品表面就产生迟滞现象。
解决对策
当成品出现迟滞现象时,需要重新考虑产品,模具设计及调整适当的成型条件。
1.产品设计方面
减小成品的肉厚变化。
2.模具设计方面
进浇点远离薄壁处或者改变肉厚突变区。这样迟滞现象就会延后,时间也会缩短。 插图2左图是不好的设计, 发生迟滞现象; 将进浇口移到远离薄片处就减小了迟滞。
插图2 .进浇位置不当而发生迟滞
3.调整成型条件
增加熔体温度或者注射压力。
第十一节 喷射(Jetting)
什么是喷射?
喷射是当熔胶以高速从一个狭小的区域,如喷嘴,流道,浇口进入到一个没有模壁阻挡开放的,宽阔的空间而产生的。喷射流以蛇形状在模具中小规模的熔接在一起。(参照插图1)。
图 1 .喷射及正常的充满模式
产生喷射的原因:
喷射会导致产品强度差,表面有污点和其它很多内部缺陷。与正常的充填模式相比较,这种充填模式中塑料熔体直接从型腔一端喷到型腔另一端,如插图所示。
解决对策
1.改变模具设计
通常喷射是由于浇口设置不合理造成的。
1).让浇口对准模壁,使用如图2所示的搭接或潜伏式浇口。
外形 2 .用搭接式浇口来避免喷射。
2).使熔胶逐渐地扩散开开。凸片式和扇形浇口使塑料进入型腔时有平滑的过渡,这样就可以减少熔体剪切压力和剪切率。
图 3 . 使用凸片式或扇形浇口来避免喷射。
3).增大浇口尺寸或减小流长。
2.调整成型条件
1).调整成型全过程的射速
在成型过程中使用一个合理的射速,当前锋熔胶到达浇口时,降低射速,等熔胶在浇口附近扩散形成舌状后立即提高射速。 下面的插图4说明这种技术。
2).调整料筒温度来控制熔胶温度。
这的解释不好理解,可能与膨胀效应和熔体性质的变化有关 (例如黏性和表面张力)。 例如,多数塑料,当温度降低,膨胀系数增加, 而另一些材料, 例如硬质PVC, 温度增加膨胀系数也增大。
图 4 .调整成型过程中不同阶段的射速来避免喷射。
第十二节 波纹(Ripples)
什么是波纹?
波纹是产品边缘或最后充填区附近出现的像指纹或波浪样的缺陷。
外形 1 . 波纹
波纹产生的原因:
根据通过使用玻璃入子分析发现, 波纹是由于前锋料踫到模壁而先冷却,后面的熔胶越过前锋冷料后踫到模壁然后冷却,如下图所示。熔胶前锋速度及模温对波纹产生影响最大,其次是浇口形状和熔胶温度。
图 2 . ( 1 ) 正常的充满没有波纹。
( 2 ) 熔胶前进速度过低或模温过低, 产生波纹。
解决对策
增加熔胶前锋速度或熔胶温度可以除去波纹。
1.修改产品设计
增加产品肉厚。
2.修改模具设计
1).设计合适的浇注系统,包括主流道,分流道,浇口。
2).设置足够的排气系统, 尤其最后充填区附近。
确保排气系统在成型过程将气体全部排出。然而,要注意的是,排气孔太大就会产生毛边。 推荐排气孔尺寸结晶性塑料是 0.025 毫米 ( 0.001 英吋), 非结晶性塑料是0.038 毫米 ( 0.0015 英吋)。
3.调整成型型条件
1).增加成型温度
2).增加注射速度
这样可以得到更多的剪切热来减小熔体的粘度。
3).增加注射压力
小心不要超过机器的容量。 通常应该使注射压力在机器最大注射压力的75%到80%,以防止对机器的液压系统的损害。
4).增加熔体温度
小心不要超过塑料允许的温度,以导致材料的裂解。
第十三节 短射(Short Shot)
什么是短射?
短射是熔融塑料没有完全充满模腔。 在某些情况下, 短射是否发生起决于充填方式。但是, 短射的问题是成品太薄或太狭长,熔胶不能完全充满模穴。
外形 1 .短射
短射的原因:
1. 任何增大阻力导致熔胶不能充分地进入模穴的因素都能引起短射。 这些因素包括:不够大的尺寸和流动空间,例如流道,浇口,薄壁。
2.过低的熔体和成型温度。
3.排气系统不良导致模穴中存在空气。
4.过低注射压力(使熔体阻力过高和流动路径不畅) , 体积, 和射速。
5.机器的原因,例如料筒无料, 供料通道阻塞, 或者回流阀门过旧产生注射压力的损失或进料不够。
6.由于熔胶过早凝固,不良的充填方式,成型时间过长。
解决对策
有几个因素影响熔胶流动性,当短射的原因被查明后,就要采取恰当的行动来解决短射。 这里有一些建议:
1.改变产品设计
最重要的是增加产品的肉厚,这样有利于熔胶的流动,能够减轻短射。
2.改变模具设计
设计一个合适的浇注系统(主浇道,分流道,浇口)。 如果必要,通过下面的方法修改你的设计:
1).让肉厚的地方先充满,这样可以防止熔胶过早冷却。
2).增加浇口的数量或尺寸来减小流长。
3).增加浇注系统的尺寸来减少阻力。
4).排气系统不良也会导致短射。
在恰当的位置设置排气孔,特别是最后充填区附近,这样有利于空气的移动。增加排气孔的尺寸和数目。
3.调整成型条件
密切注意影响材料注入型腔的因素。
1).增加注射压力
不要超过机器的容量。 通常应该使注射压力在机器最大注射压力的75%到80%,以防止对机器的液压系统的损害。
2).增加注射速度
在机器极限之内增加注射速度,这样可以得到更多的剪切热来减少熔体黏性。
3).增加注射体积
4).增加料桶温度和成型温度
通过高温将增进材料的流动性。小心不要超过塑料允许的温度,以导致材料的裂解。
5).如果经常发生短射, 可能是因为机器的原因。
检查料筒,供料通道以及回流阀门,回流阀门磨能够导致注射压力的损失和注射体积的渗漏。
第十四节 银条(Silver Streaks)
什么是银痕(银条)?
银痕是湿气,空气,可塑粒子在浇口附近呈飞溅状的散发在成品表面的现象。
图 1 .银痕
产生银条的原因:
银条产生可能是因为:
1.湿气
2.空气
塑料材料在存储期间吸收一定程度的潮气。 如果材料在成型前没适当的干燥, 在塑料中残留的潮气在注射过程中将变成蒸汽在成品的表面上出现。
在成型期间,一定数量的空气被封闭在模具里。 如果空气在注射过程中不跑掉, 它可能出现在成品表面。
3.降解(烧焦)的塑料
银条产生有的是因为降解(烧焦)的塑料发散在成品表面。
4.材料的污染
用两个材料成型时的材料污染, 当从一种材料转换为另一种材料, 如果第二种材料成型温度较高能把遗留在料筒里的剩余粒子烧焦。此外, 污染的材料,回收品,二次利用料等原料的污染。
5.料筒温度
不适宜的料筒温度可能使塑料降解, 并且将其烧焦。
6.注射体积
如果注射的体积在成型机注射容量的20 %以下, 尤其对于温度敏感的材料, 熔胶在料筒中停留时间太长而发生降解。
解决对策:
1.小心地运用材料
根据材料供给商的建议,在成型前适当地干燥材料。
2.改变型设计
1).增大主流道,分流道,浇口尺寸
限制性的主流道,分流道,浇口尺寸会给熔胶带来额外的剪切热,使材料过分加热, 产生材料裂解。
2).充分检查排气系统的尺寸
推荐排气孔尺寸结晶性塑料是 0.025 毫米 ( 0.001 英吋), 非结晶性塑料是0.038 毫米 ( 0.0015 英吋)。
3.调整成型条件
采取一些措施以防止在成型过程中材料的降解。
1).选择恰当的成型机
一般射出量应该在成型机注射容量的百分之 20 和 80 之间。 对于热敏感的材料, 这个范围更小。计算机仿真成型能够帮助我们为选择合适的成型机。这样可以避免塑料在料桶中停留过长时间。
2).如果要更换不同的材料成型,一定要彻底清洗料筒,除去旧材料。剩余的旧材料会被烧焦。
3).增加背压
它能帮助将熔体材料里混和的空气减到最少。
4).改进排气系统
让空气和蒸汽容易逃跑, 这很重要。
5).减小熔体温度, 注射压力,注射速度。
第十五节 收缩下陷和真空泡(Sink Marks and Voids)
收缩下陷和真空泡
收缩下陷是指在肉厚或肋部,凸起部,内镶件区域形成的表面局部凹陷。 真空泡是成品中间存在的真空空间。
产生收缩下陷和真空泡的原因:
收缩下陷和真空泡是由于肉厚部分在冷却时没有得到足够的补偿而产生的。 缩下陷和真空泡经常出现在肋部,凸起部的背面。这是由于冷却不平均或类似的原因导致的。
引起收缩下陷和真空泡因素:
1.注射速度和注射压力过低。
2.保压及冷却时间过短。
3.熔胶及成型温度过高。
4.局部的几何特性不合理。
在外部材料冷却和硬化以后, 内部材料才开始冷却。 它的收缩拉扯表面材料而形成收缩下陷。如果表面强度足够, 如工程树脂,可能出现真空泡而不是表面收缩下陷。 插图1说明这个现象。 图 1 .由材料收缩而没有足够补偿产生的收缩下陷和真空泡。
解决对策
收缩下陷通常能够通过产品设计和模具设计来调节和减轻。使用下面的建议以查明和解决问题。
通过在出现收缩下陷的区域增加一个特征例如增加一组锯齿来荫藏收缩下陷。 插图 2说明这个技术。
图 2 .用肋,锯齿,凹陷设计来弥补收缩下陷。
如上所示通过修改产品肉厚设计使其肉厚变化减到最小。
重新设计肋部, 凸出部, 和加强筋的厚度,使其厚度是主体厚度的50%到80%。
1.改变模具设计
1).增加流道及浇口的尺寸以推迟其冷却的时间,让更多材料进入模腔。
2).增加排气孔或者扩大排气孔。使其排气更加畅通。
3).重新设计浇口或在浇口靠近肉厚部分。使薄壁冷却前先充满肉厚处。
2.调整成型条件
1).增加保压阶段的注射量。
保压阶段保持大约3mm(0.12英寸)的注射量。
2).增加注射压力和保压时间。
3).延长螺杆推进时间和减少注射比率。
4).减小熔体和成型温度。
5).延长冷却时间。
6).检查回流阀防止漏胶。
第十六节 变色(Discoloration)
什么是的变色?
变色是成形品表面失去材料本来的光泽。
变色的原因:
材料退化或因为下面的原因而污染:
材料在料筒停留时间太久。
料筒温度太高, 使颜色发生变化。
由回收材料, 不同颜色材料, 或者外来材料污染引起的。
同样的原因还会导致其它缺陷,例如:
黑斑点/黑条纹、脆化、烧焦
解决对策
1.小心地使用材料
正确地储存原料和回收料,避免材料的污染。
2.调整模具设计
增加充分的排气系统。
⑶ 模具的力学性能要求
模具的力学性能要求
模具除其本身外,还需要模座、模架、模芯导致制件顶出装置等,这些部件一般都制成通用型。下面,我为大家分享模具的力学性能要求,希望对大家有所帮助!
硬度
硬度表征了钢对变形和接触应力的抗力。测硬度的试样易于制备,车间、试验室一般都配备有硬度计,因此,硬度是很容易测定的一种性能,而且硬度与强度也有一定关系,可通过硬度强度换算关系得到材料硬度值。按硬度范围划定的模具类别,如高硬度(52~60HRC),一般用于冷作模具,中等硬度(40~52HRC),一般用于热作模具。
钢的硬度与成分和组织均有密切关系,通过热处理,可以获得很宽的硬度变化范围。如新型模具钢012Al和CG-2可分别采用低温回火处理后硬度为60~62HRC,采用高温回火处理后硬度为50~52HRC,因此可用来制作硬度要求不同的冷、热作模具。因而这类模具钢可称为冷作、热作兼用型模具钢。
模具钢中除马氏体基体外,还存在更高硬度的其他相,如碳化物、金属间化合物等。表l为常见碳化物及合金相的硬度值。
模具钢的硬度主要取决于马氏体中溶解的碳量(或含氮量),马氏体中的含碳量取决于奥氏体化温度和时间。当温度和时间增加时,马氏体中的含碳量增多马氏体硬度会增加,但淬火加热温度过高会使奥氏体晶粒增大,淬火后残留奥氏体量增多,又会导致硬度下降。因此,为选择最佳淬火温度,通常要先作出该钢的淬火温度—晶粒度—硬度关系曲线。
马氏体中的含碳量在一定程度上与钢的合金化程度有关,尤其当回火时表现更明显。随回火温度的增高,马氏体中的含碳量在减少,但当钢中合金含量越高时,由于猕散的合金碳化物折出及残留奥氏体向马氏体的转变,所发生的二次硬化效应越明显,硬化峰值越高。
常用硬度测量方法有以下几种:
1.洛氏硬度(HR) 是最常用的一种硬度测量法,测量简便、迅速,数值可以从表盘上直接选出。洛氏硬度常用三种刻度,即HRC、HRA、HRB。
2.布氏硬度(HB) 用淬火钢球作硬度头,加上一定试验力压人工件表面,试验力卸掉以后测量压痕直径大小,再查表或计算,使得出相应的布氏硬度值HB。
布氏硬度测试主要用于退火、正火、调质等模具钢的硬度测定。
3.维氏硬度(HV) 采用的压头是具有正方形底面的金刚石角锥体,锥体相对两面间的夹角为136°,硬度值等于试验力F与压痕表面积之比值。
此法可以测试任何金属材料的硬度,但最常用于测定显微硬度,即金属内部不同组织的硬度。
三种硬度大致有如下的关系:HRC≈1/10HB,HV≈HB(当<400HBS时)
常规力学性能
模具材料的性能是由模具材料的成分和热处理后的组织所决定的。模具钢的基本组织是由马氏体基体以及在基体上分布着的碳化物和金属间化合物等构成。
模具钢的性能应该满足某种模具完成额定工作量所具备的性能,但因各类模具使用条件及所完成的额定工作量指标均不相同,故对模具性能要求也不同。又因为不同钢的化学成分和组织对各种性能的影响不同,即使同一牌号的钢也不可能同时获得各种性能的最佳值,一般某些性能的改善会损失其他的性能。因而,模具工作者常根据模具工作条件及工作定额要求选用模具钢及最佳处理工艺,使之达到主要性能最优,而其他性能损失最小的目的。
对各类模具钢提出的性能要求主要包括:硬度、强度、塑性和韧性等。
强度
强度即钢材在服役过程中,抵抗变形和断裂的能力。对于模具来说则是整个型面或各个部位在服役过程中抵抗拉伸力、压缩力、弯曲力、扭转力或综合力的能力。
衡量钢材强度常用的方法是进行拉伸试验。拉伸试验是在拉伸试验机上进行的,试棒需按规定的标准制备,拉伸过程中在记录纸上绘出拉伸力F与伸长量ΔL之间的关系图,即所谓的拉伸曲线图,分析拉伸曲线图就可以得出金属的强度指标。对于在压缩条件下工作的模具,还经常给出抗压强度。
对于模具钢,特别是含碳量高的冷作模具钢,因塑性很差,一般不用抗拉强度而是以抗弯强度作为实用指标。抗弯试验甚至对极脆的材料也能反映出一定的塑性。而且,弯曲试验产生的应力状态与许多模具工作表面产生的应力状态极相似,能比较精确地反映出材料的成分及组织因素对性能的影响。
在拉伸曲线图上有一个特殊点,当拉力到达这一点时,试棒在拉力不增加或有所下降情况下发生明显伸长变形,这种现象称为屈服。这时的应力称为这种材料的屈服点。而当外力去除后不能恢复原状的变形,这部分变形被保留下来,成为永久变形,称为塑性变形。屈服点是衡量模具钢塑性变形抗力的指标,也是最常用的强度指标。对模具材料要求具有高的屈服强度,如果模具产生了塑性变形,那么模具加工出来的零件尺寸和形状就会发生变化,产生废品,模具也就失效了。
塑性
淬硬的模具钢塑性较差,尤其是冷变形模具钢,在很小的塑性变形时即发生脆断。衡量模具钢塑性好坏,通常采用断后伸长率和断面收缩率两个指标表示。
断后伸长率是指拉伸试样拉断以后长度增加的相对百分数,以δ表示。断后伸长率δ数值越大,表明钢材塑性越好。热模钢的塑性明显高于冷模钢。
断面收缩率是指拉伸试棒经拉伸变形和拉断以后,断裂部分截面的缩小量与原始截面之比,以ψ表示。塑性材料拉断以后有明显的缩颈,所以ψ值较大。而脆性材料拉断后,截面几乎没有缩小,即没有缩颈产生,ψ值很小,说明塑性很差。
韧性
韧性是模具钢的一种重要性能指标,韧性决定了材料在冲击试验力作用下对破裂的抗断能力。材料的韧性越高,脆断的危险性越小,热疲劳强度也越高。对于衡量模具脆断倾向,冲击韧度试验具有重要意义。
冲击韧度是指冲击试样缺口处截面积上的冲击吸收功,而冲击吸收功是指规定形状和尺寸的试样在冲击试验力一次作用下折断时所吸收的功。冲击试验有夏比U形缺口冲击试验(试样开成U形缺口)、夏比V形缺口冲击试验(试样开成V形缺口)以及艾式冲击试验。
影响冲击韧度的因素很多。不同材质的模具钢冲击韧度相差很大,即使同一种材料,因组织状态不同、晶粒大小不同、内应力状态不同冲击韧度也不相同。通常是晶粒越粗大,碳化物偏析越严重(带状、网状等),马氏体组织越粗大等都会促使钢材变脆。温度不同,冲击韧度也不相同。一般情况是温度越高冲击韧度值越高,而有的钢常温下韧性很好,当温度下降到零下20~40℃时会变成脆性钢。
为了提高钢的韧性,必须采取合理的锻造及热处理工艺。锻造时应使碳化物尽量打碎,并减少或消除碳化物偏析,热处理淬火时防止晶粒过于长大,冷却速度不要过高,以防内应力产生。模具使用前或使用过程中应采取一些措施减少内应力。
特殊性能要求
由于模具种类繁多,工作条件差别很大,因此模具的常规性能及相互配合要求也各不相同,而且某种模具实际性能与试样在特定条件下测得的数据也不一致。所以,除测定材料的常规性能外,还必须根据所模拟的实际工况条件,对模具使用特性进行测量,并对模具的特殊性能提出要求,建立起正确评价模具性能的体系。
对热作模具必须测试在高温条件下的硬度、强度和冲击韧度。因为热作模具是在某一特定温度下服役,在室温下测定的性能数据,当温度升高时要发生变化。性能变化趋势和速率相差也很大,如A种材料在室温下硬度虽比材料B高,但随温度上升,硬度下降显著,到达—定温度后,硬度值反而会低于材料B。那么,当在较高温度工作条件下要求耐磨性高时,就不能选用A种材料,而需选用室温下硬度值虽较低但随温度上升,硬度下降缓慢的材料B。
对热作模具除要求室主高温条件下的硬度、强度、韧性外,还要求具有某些特殊性能。
热稳定性
热稳定性表征钢在受热过程中保持金相组织和性能的稳定能力。通常,钢的热稳定性用回火保温4h,硬度降到45HRC时的'最高加热温度表示。这种方法与材料的原始硬度有关,有资料将达到预定强度级别的钢加热,保温2h,使硬度降到一般热锻模失效硬度35HRC的最高加热温度定为该钢稳定性指标。对于因耐热性不足而堆积塌陷失效的热作模具,可以根据热稳定性预测模具的寿命水平。
回火稳定性
回火稳定性指随回火温度升高,材料的强度和硬度下降快慢的程度,也称回火抗力或抗回火软化能力。通常以钢的回火温度-硬度曲线来表示,硬度下降慢则表示回火稳定性高或回火抗力大。回火稳定性也是与回火时组织变化相联系的,它与钢的热稳定性共同表征钢在高温下的组织稳定性程度,表征模具在高温下的变形抗力。
断裂抗力
除常规力学性能如冲击韧度、抗压强度、抗弯强度等一次性断裂抗力指标外,小能量多次冲击断裂抗力更切合冷作模具实际使用状态性能。作为模具材料性能指标还包括抗压疲劳强度、接触疲劳强度等。这种疲劳断裂抗力指标是由在一定循环应力下测得的断裂循环次数,或在一定循环次数下导致断裂的载荷来表征的。关于是否把断裂韧度作为冷作模具材料的一项重要处能指标,尚待研究和探讨。
抗咬合能力及抗软化能力
抗咬合及抗软化能力分别表征了模具对发生“冷焊”及承载时因温度升高对硬度、耐磨性助抵抗能力。
热疲劳抗力及断裂韧度
热疲劳抗力表征了材料热疲劳裂纹萌生前的工作寿命和萌生后的扩展速率。热疲劳通常以20℃—750℃条件下反复加热冷却时所发生裂纹的循环次数或当循环一定次数后测定裂纹长度来确定。热疲劳抗力高的材料不易发生热疲劳裂纹,或当裂纹萌生后,扩展量小、扩展缓慢。断裂韧度则表征了裂纹失稳扩展抗力,断裂韧度高,则裂纹不易发生失稳扩展。
高温磨损与抗氧化性能
高温磨损是热作模具主要失效形式之一,正常情况下,绝大多数锤锻模及压力机模具都因磨损而失效。抗热磨损是对热作模具的使用性能的要求,是多种高温力学性能的综合体现。现在国内已有单位在自制的热磨损机上进行模具热磨损试验,收到较理想的试验效果。
实际使用表明,模具材料抗氧化性能的优劣,对模具使用寿命影响很大。因氧化会加剧模具工作过程中的磨损,导致模具型腔尺寸超差而报废。氧化还会使模具表面产生腐蚀沟,成为热疲劳裂纹起源.加剧模具热疲劳裂纹的萌生与扩展。因此,要求模具具备一定的抗氧化性能。
对冷作模具钢除常规力学性能外,还常要求具有下列性能:
耐磨性能,断裂抗力,抗咬合计抗氧化能力。
耐磨损性能
冷作模具服役时,被成形的坯料会沿着模具表面既滑动又流动,在模具与坯料间产生很大摩擦力。这种摩擦力使模具表面受到切应力作用,在其表面划刻出凹凸痕迹,这些痕迹与坯料不平整表面相咬合,逐渐在模具表面造成机械破损即磨损。冷作模具,特别是正常失效的冷作模具,多数因磨损而报废。因此,对冷作模具最基本的要求之一就是耐磨性。一般条件下材料硬度越高,耐磨性越好。但耐磨性与在软基体上存在的硬质点的形状、分布也有很大关系。
冷作模具的磨损包括磨料磨损、粘着磨损、腐蚀磨损与疲劳磨损。
模具制造心得
它有着生产成本低廉、产品一致性较好的优势,而且应用范围很大,从简单的碗盘等日常用品到复杂的雕塑等造型的创作和生产都离不开模具成型。它是陶瓷艺术工作者、陶瓷艺术爱好者所要着重掌握和了解的技能。我们这次的学习包括石膏浆的调制、同心圆造型、异型造型的车削翻模。了解石膏的材料特性,掌握使用方法步骤。并懂得陶瓷模种制作和翻制的方法步骤。
首先我们绘制好我们自己所想要的同心圆造型及异型造型。然后将图纸扩印,根据图纸来进行制作。
然后是制作模种了,利用准备好的工具在车模机上做出我们在图纸上所画出的同心圆瓶子的形状,大小。然后根据中线进行手工削制,最后,用耐水砂纸打磨平滑。
制作石膏模型首先要调制石膏料。石膏料的调制方法简单,首先准备好盆和石膏粉,然后在盆中先加入适量的水,再慢慢把石膏粉沿盆边撒入水中,一定要按照顺序先加水再加石膏。由于石膏料干固时间较短,而且要看天气而定。
然后到掉浮在石灰上面的一层水后,用手在里面均匀的搅拌,直到石膏粉冒出水面不再自然吸水沉陷,稍等片刻,就继续搅拌,要快速有力、用力均匀,成糊状即可。觉得差不多以后,就要等上6分种左右。接下来就可以将石膏浆倒到事先已经用模板挡好的模型上
,需要等上一会儿,觉得石膏干湿适中后,就可以通过各种工具在上面进行适当的操作。大约几分钟后拆去模板,迅速用刮刀或铲刀修出模型的大体形状;修表时应先从整体入手,再进行局部的精雕细刻,修大形时速度要快、要赶在石膏完全因化之前,否则石膏完全固化后铲削会很吃力。
其次是修形。修形是最关键的一步,不仅要有技巧,好要有耐心。先用小刀把初型进一步削修准确,接着用短锯条刮削,再用锯条北面进行刮削,这样模型将进一步接近实物造型;对于一些有变化的小曲面来说,还需要把锯条磨成小曲面的形状进行刮削;最后用砂纸蘸水打磨。精修过程要由粗到细、由整体到局部再到整体,要不时地从各个角度和各个面去比较、去审视、去测量,这样模型的整体感才强。如果模型表面有缺陷或边角崩缺则需要修补,首先要湿润需要修补处,然后用石膏浆填平,等干燥后打磨平整。
在做异形翻模时,我们用泥垫底,并围好造型。模具边上开牙口。在石膏模种上均匀涂抹脱模剂,然后用模板围出模具的外缘。在有缝隙的地方用泥巴塞好。然后再把石膏浆倒进里面,要稍高出异性一些体积。等石膏差不多发热干了再拆除模板。再用同种方法翻另外一块。等模具翻制完成后,等石膏发热反应冷却了,就可以开模取出模种,如果不容易打开的话,可以用水冲泡然后轻轻摇动的方法打开。
以上便是我对这次模具制作过程的了解。
模型制作课程已经结束了,但是这其中经历的东西,学到的知识会陪伴着我们,让我们更好的解决以后面临的问题。
我自认为在修造型的基础还不够,对翻模的操作也不够熟练但我会更加努力争取早日弥补自己的不足!
最后谢谢老师多日来的教导!
;⑷ 维修五金模具的常见问题及解决方法
维修五金模具的常见问题及解决方法
五金模具是在工业生产中,用各种压力机和装在压力机上的专用工具,通过压力把金属材料制出所需形状的零件或制品,这种专用工具统称为五金模具。下面,我为大家分享维修五金模具的常见问题及解决方法,希望对大家有所帮助!
跳废料
模具间隙较大、凸模较短、材质的影响(硬性、脆性),冲压速度太高、冲压油过粘或油滴太快造成的附着作用,冲压振动产生料屑发散,真空吸附及模芯未充分消磁等均可造成废屑带到模面上。
①、刃口的锋利程度。刃口的圆角越大,越容易造成废料反弹,对于材料比较薄的不锈钢等可以采用斜刃口。
②、对于比较规则的废料,可增大废料的复杂程度或在冲头上加聚胺酯顶杆来防止跳废料,在凹模刃口侧增加划痕。
③、模具的间隙是否合理。不合理的模具间隙,易造成废料反弹,对于小直径孔间隙减少10%,直径大于50.00毫米,间隙放大。
④、增加入模深度。每个工位模具冲压时,入模量的要求是一定的,入模量小,易造成废料反弹。
⑤、被加工材料的表面是否有油污。
⑥、调整冲压速度、冲压油浓度。
⑦、采用真空吸附。
⑧、对冲头、镶件、材料进行退磁处理。
压伤、刮伤
①、料带或模具有油污、废屑,导致压伤,需擦拭油污并安装自动风枪清除废屑。
②、模具表面不光滑,应提高模具表面光洁度。
③、零件表面硬度不够,表面需镀铬、渗碳、渗硼等处理。④、材料应变而失稳,减少润滑,增加压应力,调节弹簧力。
⑤、对跳废料的模具进行维修。
⑥、作业时产品刮到模具定位或其它地方造成刮伤,需修改或降低模具定位,教育作业人员作业时轻拿轻放。
工件折弯后外表面擦伤
①、原材料表面不光滑,清洁、校平原材料。
②、成型入块有废料,清除入块间的废屑。
③、成型块不光滑,将成型块电镀、抛光,提高凸凹模的光洁度。
④、凸模弯曲半径R太小,增大凸模弯曲半径⑤、模具弯曲间隙太小,调整上下模弯曲配合间隙。
⑥、凹模成型块加装滚轴成形。
漏冲孔
出现漏冲孔的情况,一般有冲头断未发现、修模后漏装冲头、冲头下陷等因素引起,修模后要进行首件确认,与样品对比,检查是否有遗漏现象,对冲头下沉的,应改善上模垫板的.硬度。
脱料不正常
①、脱料板与凸模配合过紧、脱料板倾斜、等高螺丝高度不统一或其它脱料件装置不当,应修整脱料件,脱料螺钉采用套管及内六角螺钉相结合的形式。
②、模具间隙偏小,冲头在脱离材料时需要很大的脱模力,造成冲头被材料咬住,需增加下模间隙。
③、凹模有倒锥, 修整凹模。
④、凹模落料孔与下模座漏料孔没有对正,修整漏料孔。
⑤、检查加工材料的状态。材料脏污附着到模具上,使得冲头被材料咬住而无法加工。翘曲变形的材料在冲孔后,会夹紧冲头,发现翘曲变形的材料,需弄平整后再加工。
⑥、冲头、下模的刃口钝化要及时刃磨。刃口锋利的模具能加工出漂亮的切断面,刃口钝了,则需要额外的冲压力,而且工件断面粗糙,产生很大的抵抗力,造成冲头被材料咬住。
⑦、适当采用斜刃口冲头。
⑧、尽量减少磨损,改善润滑条件,润滑板材和冲头。
⑨、弹簧或橡胶弹力不够或疲劳损耗,及时更换弹簧。
⑩、导柱与导套间隙过大,返修或更换导柱导套。
◎、平行度误差积累,重新修磨装配。
◎、推件块上的孔不垂直,使小凸模偏位,返修或更换推件块。
◎、凸模或导柱安装不垂直,重新装配,保证垂直度。
冲头使用前应注意
①、用干净抹布清洁冲头。
②、查看表面是否有刮、凹痕,如有,则用油石去除。
③、及时上油防锈。
④、安装冲头时小心不能有任何倾斜,可用尼龙锤之类的软材料工具把它轻轻敲正,只有在冲头正确定位后才能旋紧螺栓。
冲模的安装与调试
安装与调校冲模必须特别细心。因为冲模尤其大中型冲模,不仅造价高昂,而且重量大微量移动困难,人身的安全应始终放在首位。无限位装置的冲模在上下模之间应加一块垫木板。在冲床工作台清理干净后,将合模状态的待试模具置于台面合适位置。按工艺文件和冲模设计要求选定的压机滑块行程,在模具搬上台面前调至下死点并大于模具闭合高度10~15mm的位置,调节滑块连杆,移动模具,确保模柄对准模柄孔并达到合适的装模高度。一般冲裁模先固定下模(不拧紧)后再固定上模(拧紧),压板T型螺栓均宜使用合适扭矩扳手拧紧(下模),确保相同螺拴具有一致而理想的预加夹紧力。可以有效防止手动拧紧螺纹出现的因体力、性别、手感误差造成的预紧力过大或过小、相同螺纹预紧力不等,从而引起冲压过程中上下模错移、间隙改变、啃剥刃口等故障发生。
试模前对模具进行全面润滑并准备正常生产用料,在空行程启动冲模3~5次确认模具运作正常后再试冲。调整和控制凸模进入凹模深度、检查并验证冲模导向、送料、推卸、侧压与弹压等机构与装置的性能及运作灵活性,而后进行适当调节,使之达到最佳技术状态。对大中小型冲模分别试冲3、5、10件进行停产初检,合格后再试冲10、15、30件进行复检。经划线检测、冲切面与毛刺检验、一切尺寸与形位精度均符合图纸要求,才能交付生产。
冲压毛刺
①、模具间隙过大或不均匀,重新调整模具间隙。
②、模具材质及热处理不当,产生凹模倒锥或刃口不锋利,应合理选材、模具工作部分材料用硬质合金,热处理方式合理。
③、冲压磨损,研磨冲头或镶件。
④、凸模进入凹模太深,调整凸模进入凹模深度。
⑤、导向结构不精密或操作不当,检修模具内导柱导套及冲床导向精度,规范冲床操作。
折弯边不平直,尺寸不稳定
①.增加压线或预折弯工艺。
②.材料压料力不够,增加压料力。
③.凸凹模圆角磨损不对称或折弯受力不均匀,调整凸凹模间隙使之均匀、抛光凸凹模圆角。
④高度尺寸不能小于最小极限尺寸。
防止冲压噪音
冲床是板料加工工业的最关键的必备设备。冲床在工作时会产生机械传动噪声、冲压噪声和空气动力性噪声,该噪声最高值可达125dB(A)大大超过国家标准规定的85dB(A)及其以下的噪声指标要求,因而对操作工人及周围环境(如办公室、居民住宅区、会议室等)造成极其严重的伤害和污染。有效地治理该噪声己成为急待解决的问题。特别是我国的第一部《噪声法》的实施,环保产业化的规模日益增大,更加速了对这一噪声治理的迫切性。
从冲床噪声源和模具结构入手,要降低噪音得注意以下几点:
①、注重模具保养、清洁,保持刃口锋利。
②、模具刃口的形状、数量、材料和冲切线长,模具刃口与零件接触面不要太大,冲头做斜刃阶梯冲裁,使模具在不同的位置切入深度不同,整个过程实现真正的切断,而不是同步挤断。
③、模具刃口必须垂直于安装面,且凸凹模刃口配合间隙要合理,卸料困难时可增加下模间隙、增加卸料力,采用软表面的卸料板等方法。
④、各工作模板间的配合精度,加工一些排气槽。
⑤、止挡板改做小块拼件,脱料板、下模板改为镶件式,减小抨击面积。
⑥、脱料板弹顶来源改为T型顶杆,弹簧装在上模座,等高套与顶杆配用,开模状态下保证脱料板仍有一定的自由活动量。
⑦、保持润滑良好,模具无干涉,顺畅。
⑧、上下模座表面垫铝板做冲力缓冲。
⑨、模具调试好后,在冲床上加装隔声罩或海绵板隔音处理。
⑩、提高冲床精度,降低结构噪声。在工作台上安装缓冲减振降噪油缸,齿轮采用斜齿加强润滑和加装齿轮罩,气动系统中加装消声器。
弯曲表面挤压料变薄
①.凹模圆角太小,增大凹模圆角半径。
②.凸凹模间隙过小,修正凸凹模间隙。
凹形件底部不平
①.材料本身不平整,需校平材料。
②.顶板和材料接触面积小或顶料力不够,需调整顶料装置,增加顶料力。
③.凹模内无顶料装置,应增加顶料装置或校正。
④.加整形工序。
不锈钢翻边变形
在制造翻边之前向材料施用优质成形润滑剂,这能令材料更好地从模具中分离出来,在成形时顺畅地在下模表面移动。如此给予材料一个更好的机会去分布被弯曲和被拉伸时产生的应力,防止在成形翻边孔边上出现的变形和翻边孔底部的磨损。
材料扭曲
在材料上冲切大量孔,导致材料平面度不良,成因可能是冲压应力累积。冲切一个孔时,孔周边材料被向下拉伸,令板材上表面拉应力增大,下冲运动也导致板材下表面压应力增大。对于冲少量的孔,结果不明显,但随着冲孔数目的增加,拉应力和压应力也成倍增加直到令材料变形。
消除这种变形的方法之一是:每隔一个孔冲切,然后返回冲切剩余的孔。这虽然在板材上产生相同的应力,但瓦解了因同向连续一个紧接一个地冲切而产生拉应力/压应力积聚。如此也令第一批孔分担了第二批孔的部变形效应。
模具严重磨损
①、及时更换已经磨损的模具导向组件和冲头。
②、检查模具间隙是否不合理(偏小),增加下模间隙。
③、尽量减少磨损,改善润滑条件,润滑板材和冲头。油量和注油次数视加工材料的条件而定。冷轧钢板、耐蚀钢板等无锈垢的材料,要给模具注油,注油点为导套、注油口、下模等。油用轻机油。有锈垢的材料,加工时铁锈微粉会吸入冲头和导套之间,产生污垢,使得冲头不
能在导套内自由滑动,这种情况下,如果上油,会使得锈垢更容易沾上,因此冲这种材料时,相反要把油擦干净,每月分解一回,用汽(柴)油把冲头、下模的污垢去掉,重新组装前再擦干净。这样就能保证模具有良好的润滑性能。
④、刃磨方法不当,造成模具的退火,加剧磨损,应当使用软磨料砂轮,采用小的吃刀量,足量的冷却液并经常清理砂轮。
;