1. 精密模具的热处理变形及预防措施
精密模具热处理变形及预防措施:
模具热处理变形是模具处理过程的主要缺陷之一,对一些精密复杂模具,常因热处理变形而报废,因此控制精密复杂模具的变形一卖宏直成为热处理生产中的关键问题。众所周知,模具在热处理时,特别是在淬火过程中,由于模具截面各部分加热和冷却速度的不一致而引起的温度差,加之组织转变的不等时性等原因,使得模具截面各部分体积胀缩不均匀,组织转变的不均匀,从而引起“组织应力”和模具内外温差所引轿梁起的热应力。当其内应力超过模具的屈服极限时,就会引起模具的变形。因此,减少和控制精密复杂模具变形乃是广大热处理工作者的一项重要的研究课题。本文试就精密复杂模具变形状况、变形原因的研究,来探讨减少和控制精密复杂模具变形的措施,以提高模具产品的质量和使用寿命。
一、模具材料的影响因素及预防措施:
1.模具的选材:
(1)某机械厂从选材和热处理简便考虑,选择T10A钢制造截面尺寸相差悬殊、要求淬火后变形较小的较复杂模具,硬度要求56-60HRC。热处理后模具硬度符合技术要求,但模具变形较大,无法使用,造成模具报废。后来该厂采用微变形钢Cr12钢制造,模具热处理后硬度和变形量都符合要求。
(2)预防措施:因此制造精密复杂、要求变形较小的模具,要尽量选用微变形钢,如空淬钢等。
2.模具材质的影响:
某厂送来一批Cr12MoV钢较复杂模具,模具都带有¢60mm圆孔,模具热处理后,部分模具圆孔出现椭圆,造成模具报废。一般来说Cr12MoV钢是微变形钢,不应该出现较大变形。我们对变形严重的模具进行金相分析发现,模具钢中含有大量共晶碳化物,且呈带状和块状分布。
(1)模具椭圆(变形)产生的原因这是因为模具钢中呈一定方向分布的不均匀碳化物的存在,碳化物的膨胀系数比钢的基体组织小30%左右,加热时它阻止模具内孔膨胀,冷却时又阻止模具内孔收缩,使模具内孔发生不均匀的变形,使模具的圆孔出现椭圆。
(2)预防措施:①在制造精密复杂模具时,要尽量选择碳化物偏析较小的模具钢,不要图便宜,选用小钢厂生产的材质较差钢材。②对存在碳化物严重偏析的模具钢要进行合理锻造,来打碎碳化物晶块,降低碳化物不均匀分布的等级,消除性能的各向异性。③对锻后的模具钢要进行调质热处理,使之获得碳化物分布均匀、细小和弥散的索氏体组织、从而减少精密复杂模具热处理后的变形。④对于尺寸较大或无法锻造的模具,可采用固溶双细化处理,使碳化物细化、分布均匀,棱角圆整化,可达到减少模具热处理变形的目的。
二、模具结构设计的影响因素及预防措施:
有些模具选材和钢的材质都很好,往往因为模具结构设计不合理,如薄边、尖角、沟槽、突变的台阶、厚薄悬殊等,造成模具热处理后变形较大。
1、变形的原因:由于模具各处厚薄不均或存在尖锐圆角,因此在淬火时引起模具各部位之间的热应力和组织应力的不同,导致各部位体积膨胀的不同,使模具淬火后产生变形。
2、预防措施:设计模具时,在满足实际生产需要的情况下,应尽量减少模具厚薄悬殊,结构不对称,在模具的厚薄交界处,尽可能采用平滑过渡等结构设计。根据模具的变形规律,预留加工余量,在淬火后不致于因为模具变形而使模具报废。对形状特别复杂的模具,为使淬火时冷却均匀,可采用给合结构。
三、模具制造工序及残余应力的影响因素及预防措施:
在工厂经常发现,一些形状复杂、精度要求高的模具,在热处理后变形较大,经认真调查后发现,模具在机械加工和最后热处理未进行任何预先热处理。
1、变形原因:在机械加工过程中的残余应力和淬火后的应力叠加,增大了模具热处理后的变形。
2、预防措施:
(1)粗加工后、半精加工前应进行一次去应力退火,即(630-680)℃×(3-4)h炉冷至500℃以下出炉空冷,也可采用400℃×(2-3)h去应力处理。
(2)降低淬火温度,减少淬火后的残余应力。
(3)采中帆册用淬油170ºC出油空冷(分级淬火)。
(4)采用等温淬火工艺可减少淬火残余应力。
采用以上措施可使模具淬火后残余应力减少,模具变形较小。
四、热处理加热工艺的影响因素及预防措施:
加热速度的影响:模具热处理后的变形一般都认为是冷却造成的,这是不正确的。模具特别是复杂模具,加工工艺的正确与否对模具的变形往往产生较大的影响,对一些模具加热工艺的对比可明显看出,加热速度较快,往往产生较大的变形。
(1)变形的原因:任何金属加热时都要膨胀,由于钢在加热时,同一个模具内,各部分的温度不均(即加热的不均匀)就必然会造成模具内各部分的膨胀的不一致性,从而形成因加热不均的内应力。在钢的相变点以下温度,不均匀的加热主要产生热应力,超过相变温度加热不均匀,还会产生组织转变的不等时性,既产生组织应力。因此加热速度越快,模具表面与心部的温度差别越大,应力也越大,模具热处理后产生的变形也越大。
(2)预防措施:对复杂模具在相变点以下加热时应缓慢加热,一般来说,模具真空热处理变形要比盐浴炉加热淬火小得多。‚采用预热,对于低合金钢模具可采用一次预热(550-620ºC);对于高合金刚模具应采用二次预热(550-620ºC和800-850ºC)。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
2. 解决冲压模具热处理变形和开裂的有效方法
解决冲压模具热处理变形和开裂的有效方法
造成冲压模具热处理变形与开裂的原因是多方面的,包括钢材的化学成分与原始组织、零件的结构形状和截面尺寸以及热处理工艺等因素都会涉及。下面,我为大家分享解决冲压模具热处理变形和开裂的有效方法,希望对大家有所帮助!
对于共析钢的冲压模具锻件,应先进行正火处理,然后进行球化退火,以消除锻件内网状二次渗碳体,细化晶粒,消除内应力,并为后续(或最终)热处理作好组织准备。冲压凹模零件淬火前,应先进行低温回火(稳定化处理)。
对一些形状较为复杂、精度要求高的凹模,在粗加工后精加工前,应先进行调质处理,以减少淬火变形,尽量避免开裂倾向,并为最终热处理作好组织准备。
加热温度的确定
淬火加热温度过高,使得奥氏体晶粒粗大,且会造成氧化、脱碳现象,零件变搭拿形与开裂的倾向增大。在规定的加热温度范围内,淬火加热温度偏低则会造成零件内孔收缩,孔径知燃搭尺寸变小。
故应选用加热温度规范的上限植;而对于合金钢,加热温度偏高,则会引起内孔膨胀,孔径尺寸变大,因此应选用加热温度的下限值为宜。
加热方式的改进
对于一些小型的'冲压凸凹模或细长的圆柱形零件(如小冲头),可事先预热至520--580℃,然后放入中温盐浴炉内加热至淬火温度,比直接使用电炉或反射炉加热淬火零件变形明显减小,且能控制开裂倾向。
尤其是高合金钢模具零件,正确的加热方式为:先预热(温度为530--560℃),然后升至淬火温度。加热过程中应尽量缩短高温段时间,以减少淬火变形及避免小裂纹的生产。
回火处理的控制
模具零件从冷却剂中取出后,不宜在空气中停留较长时间,应及时放入回火炉中进行回火处理。段举回火处理时,应避免低温回火脆性和高温回火脆性。
对于一些精度要求的模具零件,淬火后采用多次回火处理,以消除内应力,减小变形,避免开裂倾向。
线切割前的淬火处理
对于一些线切割加工的冲压模零件,线切割加工之前应采用分级淬火和多次回火(或高温回火)热处理工艺,以提高零件的淬透性,并使其内应力分布趋于均匀,且处于较小内应力状态。内应力越小,线切割后的变形和开裂的倾向性就越小。
冷却方式的优化
当零件从加热炉中取出放入冷却剂之前,应放置在空气中适当预冷,随后放入冷却剂中淬火,这是减小零件淬火变形及防止零件开裂倾向的有效方法之一。
模具零件放入冷却剂后,应适当旋转,且旋转方向有所改变,这样有利于零件部位保持均匀的冷却速率,可明显减小变形及防止开裂倾向。
淬火零件的防护
淬火、回火处理是影响冲压模具零件热处理变形或开裂的重要环节。对于淬火重要的模具零件(如凸模、凹模)易发生变形或开裂的部位,应采取有效的防护措施,力求使零件的形状与截面对称,内应力均衡。常用的防护方法如下:a.捆包法;b.填充法;c.堵塞法。
冷却剂的选择
对于合金钢而言,减小淬火变形的最佳方法是使用硝酸钾和亚硝酸钠热浴的等温淬火或分级淬火,这种方法尤其适宜处理形状复杂、尺寸要求精确的冲压模。
有些多孔模具零件(如多孔凹模),等温淬火时间不宜过长,否则会引起孔径或孔距变大。若利用油中冷却收缩,以及硝酸盐中冷却膨胀的特征,合理应用双介质淬火,可减小零件变形。
;3. 热处理后变形的原因是什么呢
(1)凡是牵涉到加热和冷却的热处理过程,都可能造成工件的变形。工件变形更主要回是冷却方面。由于冷却过程中答,零件表面与中心的冷却速度不同,从而造成温度差,其体积收缩在表面与中心也就不一样,产生热应力。
另一方面是钢在转变时比体积发生变化(马氏体是各种组织中比体积最大的一个;奥氏体比体积小),由于工件截面上各处转变先后不同,产生组织应力。工件淬火变形就是热应力和组织应力综合作用影响的结果。
(2)工件的结构形状、原材料质量、热处理前的加工状态、工件的自重以及工件在炉中加热和冷却时的支承或夹持不当,冷却投入方向、方法和冷却时在冷却中的动作不当等也能引起变形。
加热温度高,冷却速快,故淬火变形最为严重。
(3)工件热处理后的不稳定组织和不稳定的应力状态,在常温和零下温度长时间放置或使用过程中,逐渐发生转变而趋于稳定,也会伴随引起工件的变形,这种变形称为时效变形。时效变形虽然不大,但是对于精密零件和标准量具也不许的。实际生产中必须予以防止。
(4)热处理过程中产生的内应力有
热应力和相变应力,它们的形成原因和作用是不同的。这种应力在热处理过程中对变形影响是主要的原因。
4. 经过热处理的工件为什么会产生变形、翘曲现象有什么可以解决的措施
产生变形、翘曲现象的原因有以下几种:
①加热速度或淬火冷却速度太快;
②淬火时温度太高;
③淬火时工件下水方向不当及装料方法不当。
④铸件的设计结构不合理(如两连接壁的壁厚相差太大,框形结构中加强筋太薄或太细小;
可以的解决措施:
①降低升温速度,提高淬火介质温度,或换成冷却速度稍慢的淬火介质以防止合金内产生残余应力;
②在厚壁或薄壁部位涂敷涂料或用石棉纤维等隔热材料包覆薄壁部位;
③根据铸件结构、外形选择合理的下水方向或采用专用防变形的夹具;
④变形量不大的部位,则可在淬火后立即予以矫正。
5. 压铸模具钢材热处理变形了是怎么回事
在机械加工过程中的残余应力和淬火后的应力叠加,增大了模具热处理后的变形。
预防措施
(1)粗加工后、半精加工前应进行一次去应力退火,即(630-680)℃×(3-4)h炉冷至500℃以下出炉空冷,也可采用400℃×(2-3)h去应力处理。
(2)降低淬火温度,减少淬火后的残余应力。
(3)采用淬油170℃出油空冷(分级淬火)。
(4)采用等温淬火工艺可减少淬火残余应力。
采用以上措施可使模具淬火后残余应力减少,模具变形较小。
6. 模具的热处理变形怎样预防你知道吗
精密复杂模具的热处理变形可采取以下方法预防。(1)公道选材。对精密复杂模具应选择材质好的微变形模具钢(如空淬钢),对碳化物偏析严峻的模具厅冲钢应进行公道铸造并进行,对较大和无法铸造模具钢可进行固溶双细化热处理。(2)模具结构设计要公道,厚薄不要太悬殊,外形要对称,对于变形较大模具要把握变形规律,预留加工余量,对于大型、精密复杂模具可采用组合结构。(3)精密复杂模具要进行预先热处理,消除机械加工过程中产生的残余应力。(4)公道选择加热温度,控制加热速度,对于精密复杂模具可采取缓慢加热、预热和其他均衡扮历歼加热的方法来减少模具热处理变形。(5)在保证模烂亮具硬度的条件下,尽量采用预冷、分级冷却淬火或温淬火工艺。
7. 简答题热处理变形的原因有哪些
温度是变形的关键因素
工业生产中实际应用的热处理工艺形式非常多,如退火,正火,回火,淬火等,但是它们的基本过程都是热作用过程,都是由加热、保温和冷却三个阶段组成的。整个工艺过程都可以用加热速度、加热温度、保温时间、冷却速度以及热处理周期等几个参数来描述。在热处理工艺中,要用到各种加热炉,金属热处理便在这些加热炉中进行(如基本热处理中的退火、淬火、回火、化学热处理的渗碳、渗氨、渗铝、渗铬或去氢、去氧等等)。因此,加热炉内的温度测量就成为热处理的重要工艺参数测量。每一种热处理工艺规范中,温度是余乎唤很重要的内容。如果温度测量不准确,热处理工艺规范就得不到正确的执行,以至造成产品质量下降甚至报废。温度的测量与控制是热处理工艺的关键,也是影响变形的关键因素。
(1)工艺温度降低后工件的高温强度损失相对减少,塑性抗力增强。这样工件的抗应力变形、抗淬火变形、抗高温蠕变的综合能力增强,变形就会减少;
(2)工艺温度降低后工件加热、竖凯冷却的温度区间减少,由此而引起的各部位温度不一致性也会降低,由此而导致的热应力和组织应力也相对减少,这样变形就会减少;
(3)如果工艺温度降低、且热处理工艺时间缩短,则工件的高温蠕变时间减少,变形也会减少。
减小热处理变形需要合理的热处理工艺。各种热处理方式相结合,搭配,尽量既满足性能需要同时又减少变形等缺陷。例如经热处理后的20CrNi2MoA钢齿圈齿表面、齿心部硬度及有效硬化层深度均达到要求。图1为模数mn=12mm的齿圈经不同温度球化退火后的硬度梯度曲线。由图1可以看顷毕出,在650℃球化退火后的硬度梯度和740℃球化+680℃等温处理的硬度梯度结果相近,未经球化退火的齿轮的硬度较前两个低。这是因为球化退火可使淬火后渗层表面残留奥氏体量减少,从而提高了齿表面硬度,因此20CrNi2MoA钢齿圈渗碳后应采用球化退火工艺,同时为减小热处理变形,在650℃球化退火效果更好。
8. H13模具热处理后在使用中的变形问题
关于变形问题镇则是这样:这是一套复合模具,由上下模和抽芯组成,变形有两个方面
1.模具热处理后变形,即上下模合不拢或者间隙大,在浇注时产生飞边,或者产品的有些尺寸偏大或偏小,达不到要求
2.模具在浇注前要预热至350℃,然后浇注.这一种变形就是在预热时所产生的,冷状态下模具能合拢,预热御银棚后上下模间隙搏游大,浇注出来的产品有飞边
孤鸿踏雪前辈请指教
9. 请问,精密模具热处理变形原因及预防措施
一、模具材料的影响:
1、模具的选材:某机械厂从选材和热处理简便考虑,选择T10A钢制造截面尺寸相差悬殊、要求淬火后变形较小的较复杂模具,硬度要求56-60HRC。热处理后模具硬度符合技术要求,但模具变形较大,无法使用,造成模具报废。后来该厂采用微变形钢Cr12钢制造,模具热处理后硬度和变形量都符合要求。预防措施: 因此制造精密复杂、要求变形较小的模具,要尽量选用微变形钢,如空淬钢等。
2.模具材质的影响:某厂送来一批Cr12MoV钢较复杂模具,模具都带有¢60m m圆孔,模具热处理后,部分模具圆孔出现椭圆,造成模具报废。 一般来说Cr12MoV钢是微变形钢,不应该出现较大变形。我们对变形严重的模具进行金相分析发现,模具钢中含有大量共晶碳化物,且呈带状和块状分布。
(1)模具椭圆(变形)产生的原因: 这是因为模具钢中呈一定方向分布的不均匀碳化物的存在,碳化物的膨胀系数比钢的基体组织小30%左右,加热时它阻止模具内孔膨胀,冷却时又阻止模具内孔收缩,使模具内孔发生不均匀的变形,使模具的圆孔出现椭圆。
(2)预防措施: ①在制造精密复杂模具时,要尽量选择碳化物偏析较小的模具钢,不要图便宜,选用小钢厂生产的材质较差钢材。②对存在碳化物严重偏析的模具钢要进行合理锻造,来打碎碳化物晶块,降低碳化物不均匀分布的等级,消除性能的各向异性。③对锻后的模具钢要进行调质热处理,使之获得碳化物分布均匀、细小和弥散的索氏体组织、从而减少精密复杂模具热处理后的变形。④对于尺寸较大或无法锻造的模具,可采用固溶双细化处理,使碳化物细化、分布均匀,棱角圆整化,可达到减少模具热处理变形的目的。
二、模具结构设计的影响:有些模具选材和钢的材质都很好,往往因为模具结构设计不合理,如薄边、尖角、沟槽、突变的台阶、厚薄悬殊等,造成模具热处理后变形较大。
1、变形的原因:由于模具各处厚薄不均或存在尖锐圆角,因此在淬火时引起模具各部位之间的热应力和组织应力的不同,导致各部位体积膨胀的不同,使模具淬火后产生变形。
2、 预防措施:设计模具时,在满足实际生产需要的情况下,应尽量减少模具厚薄悬殊,结构不对称,在模具的厚薄交界处,尽可能采用平滑过渡等结构设计。根据模具的变形规律,预留加工余量,在淬火后不致于因为模具变形而使模具报废。对形状特别复杂的模具,为使淬火时冷却均匀,可采用给合结构。
三、模具制造工序及残余应力的影响:在工厂经常发现,一些形状复杂、精度要求高的模具,在热处理后变形较大,经认真调查后发现,模具在机械加工和最后热处理未进行任何预先热处理。
1、 变形原因:在机械加工过程中的残余应力和淬火后的应力叠加,增大了模具热处理后的变形。
2、 预防措施: (1)粗加工后、半精加工前应进行一次去应力退火,即(630-680)℃×(3-4)h炉冷至500℃以下出炉空冷,也可采用400℃×(2-3)h去应力处理。 (2)降低淬火温度,减少淬火后的残余应力。 (3) 采用淬油170ºC出油空冷(分级淬火)。 (4)采用等温淬火工艺可减少淬火残余应力。采用以上措施可使模具淬火后残余应力减少,模具变形较小。
四、热处理加热工艺的影响:
1、加热速度的影响:模具热处理后的变形一般都认为是冷却造成的,这是不正确的。模具特别是复杂模具,加工工艺的正确与否对模具的变形往往产生较大的影响,对一些模具加热工艺的对比可明显看出,加热速度较快,往往产生较大的变形。
(1)变形原因: 任何金属加热时都要膨胀,由于钢在加热时,同一个模具内,各部分的温度不均(即加热的不均匀)就必然会造成模具内各部分的膨胀的不一致性,从而形成因加热不均的内应力。在钢的相变点以下温度,不均匀的加热主要产生热应力,超过相变温度加热不均匀,还会产生组织转变的不等时性,既产生组织应力。因此加热速度越快,模具表面与心部的温度差别越大,应力也越大,模具热处理后产生的变形也越大。
(2)预防措施 :对复杂模具在相变点以下加热时应缓慢加热,一般来说,模具真空热处理变形要比盐浴炉加热淬火小得多。‚采用预热,对于低合金钢模具可采用一次预热(550-620ºC);对于高合金刚模具应采用二次预热(550-620ºC和800-850ºC)。