⑴ 渗碳和渗氮热处理工艺的温度范围,表面处理的深度各是多少
渗碳:是对金属表面处理的一种,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热到900--950摄氏度的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分。一般渗碳层深度范围为0.8~1.2mm﹐深度渗碳时可达2.0mm或更深。
渗氮,是在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。常见有液体渗氮、气体渗氮、离子渗氮。传统的气体渗氮是把工件放入密封容器中,通以流动的氨气并加热,保温较长时间后,氨气热分解产生活性氮原子,不断吸附到工件表面,并扩散渗入工件表层内,从而改变表层的化学成分和组织,获得优良的表面性能。
氮化温度一般在480~520℃之间,氨气分解率为15~30%,保温时间近80小时。这种工艺适用于渗层浅、畸变要求严、硬度要求高的零件。以抗蚀为目的的气体渗氮,渗氮温度在 550~700℃之间,保温0.5~3小时。氮化深度在0.15~0.75mm之间。
⑵ 氮化技术是什么技术。请问
一、氮化的机理
氮化是将工件放入大量活性氮原子的介质中,在一定温度与压力下,把氮原子渗入钢件表面,形成富氮硬化层的热处理。
二、氮化的作用
1、氮化能使零件表面有更高的硬度和耐磨性。例如用38CrMoAlA钢制作的零件经氮化处理后表面的硬度可达HV=950—1200,相当于HRC=65—72,而且氮化后的高强度和高耐磨性保持到500—600℃,不会发生显著的改变。
2、能提高抗疲劳能力。由于氮化层内形成了更大的压应力,因此在交变载荷作用下,零件表现出具有更高的疲劳极限和较低的缺口敏感性,氮化后工件的疲劳极限可提高15—35%。
3、提高工件抗腐蚀能力,由于氮化使工件表面形成一层致密的、化学稳定性较高的ε相层,在水蒸气中及碱性溶液中具有高的抗腐蚀性,此种氮化法又简单又经济,可以代替镀锌、发蓝,以及其它化学镀层处理。此外,有些模具经过氮化,不但可以提高耐磨性和抗腐性,还能减少模具与零件的粘合现象,延长模具的工作寿命。
二、氮化的实现方法
1、气体氮化
气体氮化是将工件放入一个密封空间内,通入氨气,加热到500-580℃保温几个小时到几十个小时。氨气在400℃以上将发生如下分解反应:2NH3—→3H2+2[N],从而炉内就有大量活性氮原子,活性氮原子[N]被钢表面吸收,并向内部扩散,从而形成了氮化层。
以提高硬度和耐磨性的氮化通常渗氮温度为500—520℃。停留时间取决于渗氮层所需要的厚度,一般以0.01mm/h计算。因此为获得0.25—0.65mm的厚度,所需要的时间约为20—60h。提高渗氮温度,虽然可以加速渗氮过程,但会使氮化物聚集、粗化,从而使零件表面层的硬度降低。
对于提高硬度和耐磨性的氮化,在氮化时必须采用含Mo、A、V等元素的合金钢,如38CrMoAlA、38CrMoAA等钢。这些钢经氮很后,在氮化层中含有各种合金氮化物,如:AlN、CrN、MoN、VN等。这些氮化物具有很高的硬度和稳定性,并且均匀弥散地分布于钢中,使钢的氮化层具有很高的硬度和耐磨性。Cr还能提高钢的淬透性,使大型零件在氮化前调质时能得到均匀的机械性能。Mo还能细化晶粒,并降低钢的第二类回火脆性。如果用普通碳钢,在氮化层中形成纯氮化铁,当加热到较高温度时,易于分解聚集粗化,不能获得高硬度和高耐磨性。
抗腐蚀氮化温度一般在600—700℃之间,分解率大致在40—70%范围,停留时间由15分钟到4小时不等,深度一般不超过0.05m m。对于抗腐蚀的氮化用钢,可应用任何钢种,都能获得良好的效果。
2、液体氮化
液体氮化它是一种较新的化学热处理工艺,温度不超过570℃,处理时间短,仅1—3h;而且不要专用钢材,试验表明:40Cr经液体氮化处理比一般淬火回火后的抗磨能力提高50%;铸铁经液体氮化处理其抗磨能力提高更多。不仅如此,实践证明:经过液体氮化处理的零件,在耐疲劳性、耐腐蚀性等方面都有不同程度的提高;高速钢刀具经液体氮化处理,一般能提高使用寿命20—200%;3Cr2W8V压铸模经液体氮化处理后,可提高使用寿命3—5倍。液体氮化表层硬而不脆,并且具有一定的韧性,不容易发生剥落现象。
但是,液体氮化也有缺点:如它的氮化表层中的氮铁化合物层厚度比较薄,仅仅只有0.01—0.02mm。国外多采用氰化盐作原料液体氮化,国内已改用无毒原料液体氮化。我国无毒液体氮化的配方是:尿素40%,碳酸钠30%、氯化钾20%,氢氧化钾10%(混合盐溶点为340℃左右)。液体氮化虽然有很多优点,但由于溶盐反应有毒性,影响操作人员身体健康,废盐也不好处理。因此,与用越来越受到限制。
3、离子氮化
离子氮化又叫“辉光离子氮化”是最近起来的一种热处理工艺,它具有生产周期短,零件表面硬度高,能控制氮化层脆性等优点。因而,近几年来国内发展迅速,使用范围很广。
辉光离子氮化的基本原理:
辉光离子氮化是将零件放到离子氮化的真空室内,氮化的零件接高压直流电源的阴极(负极),电炉外壳接直流高压电源的阳极(正极),当向真空容器内充入氨气,但容器内压强保持200-1000PA之间,在阴极和阳极间加800—1000伏直流电压,氨气就会电离,这种气体经电离作用后,产生带正电的氮阳离子[N+]和带负电的阴离子[N-],形成了一个等离子区。在等离子区内,氮的正离子在高压电场加速下,快速冲向阴极,轰击清洗需氮化的零件表面,将动能转变为热能,还由于氮离子转变成氮原子时,又放出大量的热能并发出很亮的淡紫色光,另外电压降落在工件附近时也产生热量,这三种热量将零件加热到需要氮化温度。
在这种温度下,氮离子与零件金属表面发生化学反应,氮原子渗入到零件表面并扩散到内部,形成了氮化层。
辉光离子氮化的特点:
(1)、表面加热速度快,可缩短加热及冷却时间,到十分之一至十二分之一。而且除处理表面加热外其余部分均处在低温(100℃左右)状态,既节约了加热功率又减少零件的变形。
(2)、扩散过程快,在高压电场作用下,由于氮化原子的运动速度比气体氮化快许多倍,渗入速度更快,一般只需要3—10h。
(3)、氮化层韧性好,具有高抗疲劳和高抗磨性能,氮化层脆性白色ε相(Fe2N)控制在0—0.2mm范围,从而免去氮化零件的磨削加工。
表面硬度高达HV900(HRC64),氮化层深度可掌握在0.09—0.87mm。
四、各种氮化法的成本分析
1、盐浴氮化炉结构简单,价格低,操作工艺很容易掌握,氮化成本也低,但氮化质量不高,废弃物有污染,通常很少采用。
2、气体氮化炉构复杂,价格稍高,操作相比而言稍有难度,但氮化质量好,可以达到很深的渗层与较高的硬度,但需要较长的时间,氨气的用量也很高
3、离子氮化炉生产制造工艺要求很高,所用材料也很讲究,电气控制技术含量很高,对操作人员的整体要求高,但氮化质量最好,渗入速度快,氮化成本低于气体氮化,是很好的发展趋势。
以一次性装炉量在400公斤为例:初步投资别如下
盐浴氮化炉投资在贰万元左右
气体氮化炉在肆万元左右
离子氮化要在玖万元左右
达到同样的渗层,离子氮化的成本约为气体氮化的60%(由于盐浴氮化很难达到气体氮化与离子氮化的渗层,所以不能比较它们的运行成本)
⑶ 氮化处理能达到多少深度
深度为0.02~0.02m/m。
气体氮化系于1923年由德国AF ry 所发表,将工件置于炉内,利NH3气直接输进500~550℃的氮化炉内,保持20~100小时,使NH3气分解为原子状态的(N)气与(H)气而进行渗氮处理。
在使钢的表面产生耐磨、耐腐蚀之化合物层为主要目的,其厚度为0.02~0.02m/m,其性质极硬Hv 1000~1200,又极脆,NH3之分解率视流量的大小与温度的高低而有所改变,流量愈大则分解度愈低,流量愈小则分解率愈高,温度愈高分解率愈高,温度愈低分解率亦愈低。
(3)模具氮化层深多少扩展阅读:
氮化处理要求规定:
1、拟进行离子氮化的零件必须经过彻底的清洗,以免因油污、锈斑、挥发物等而引起电弧,损伤零件。零件在装炉时,其间隙必须足够大而均匀,装载过密处往往会引起温度过高。
2、氮化介质采用氨或氮氢混合气体。离子氮化操作要求严格,否则易导致溢度不均匀和弧光放电。
3、对局部氮化的零件,可在非渗部位用外罩(对凸出面而言)或塞子(对内凹面或孔而言)屏蔽,以避免在该处起辉。装炉时还要注意合理地分布测温监控热电偶。
⑷ 8407模具钢热处理后硬度是多少
为了使模具表面具有更好的耐磨性,可以对模具进行氮化处理,在模具表面生回成一层较硬答的氮化层。在525℃下氮化,表面硬度可达1000~1250HV。在575℃时软氮化2小时,表面硬度可达950~1000HV,硬化层深度为0.01~0.02mm。
8407热作模具钢主要运用在:
1、塑胶模具(注塑模具与压塑传递模建议使用硬度50-52HRC);
2、挤压模具(模仁建议使用硬度45-50HRC;模托、模座、衬套、滑块、顶杆建议40-48HRC);
3、厚钢板冷冲(废钢剪切、热剪切建议使用硬度45-52HRC);
8407模具钢一种铬、钼、钒热作合金模具钢,德松模具钢由瑞典原产地进口的一胜百8407模具钢分为8407 2M(即8407)和8407 SUPREME ESR两种型号,8407 2M模具钢是使用特殊炼钢技术和严密质量控制后得到的高纯度以及组织极其微细的热作模具钢料;
它比一般传统炼制的H13模具钢各项适用参数性能更佳,主要特征为高低温均有良好的耐磨性、优良的韧性和延展性、稳定的机加工性和抛光性、优良的高温强度和抗热疲劳性、良好的淬透性和微热处理变形性。