导航:首页 > 模具设计 > 制作浇注模具如何做到轻便耐用

制作浇注模具如何做到轻便耐用

发布时间:2024-02-03 10:46:20

❶ 在实际中如何提高模具的使用寿命

精密体积成形模具的设计制造与模具寿命
【摘要】论述了精密体积成形(精锻)模具的寿命与模具设计制造的关系。采用先进设计手段合理设计精密体积成形件(精锻件)、锻压工艺、模具结构,选择模具材料,制定模具钢的锻造规范和热处理工艺以及合理确定机械加工工艺及加工精度,可大幅度提高模具寿命。

� 1、引言�
面对廿一世纪的国内建设形势,企业要适应市场经济的发展,作为国家支拄产
业的汽车工业将加大轻、微、轿车的产量,因而对模锻件的精度提出了更高的要求。在生产过程中,提高模具寿命是一个复杂的综合性问题。所有锻压工艺,特别是净形和近似净形加工工艺,在很大程度上取决于模具的精度和品质,取决于模具的技术水平。模具技术反映在模具设计和制造上,而模具寿命除与上述两个环节有关外,还与使用环节有关。�
提高模具寿命有极大的经济效益,一般在试生产阶段模具工装费用占生产成本的25%左右,而定型生产时仅为10%。�
模具的早期失效形式,多为凸模断裂、模膛边缘堆塌、飞边遭桥部龟裂、模腔底部发生裂纹。影响模具寿命的因素较多,涉及面广,模具设计是模具寿命的基础。模具设计环节是指模具的结构设计、成形模腔设计和确定模具钢种、模具硬度等。模具制造环节是指制模工艺、热处理规范和表面处理技术等。本文仅从模具设计和模具制造两个方面探讨提高模具寿命的措施。

2、合理设计精密体积成形件(精锻件)�
模锻件应尽量避免带小孔、窄槽、夹角,形状要尽量对称,即使不能做到轴对称,也希望达到上、下对称或左、右对称。要设计拔模斜度,避免应力集中和模锻单位压力增大,克服偏心受载和模具磨损不均等缺陷。�
对于锻模模腔边缘和底部圆角半径R,设计时应从保证锻件型腔容易充满的前提下尽可能放大。若圆角半径过小,模腔边缘很容易在高温高压下堆塌,严重者会形成倒锥,影响模锻件出模。如底部圆角半径R过小而又不是光滑过渡,则容易产生裂纹且会不断扩大。
设计模具时应充分利用CAD系统功能对产品进行二维和三维设计,保证产品原始信息的统一性和精确性,避免人为因素造成的错误,提高模具的设计质量。产品三维立体的造型过程以在锻造前全面反映出产品的外部形状,及时发现原始设计中可能存在的问题,同时根据产品信息,用电脑设计出加工模具型腔的电极,为后续模具加工做好准备。
采用CAM技术可以将设计的电极精确地按指定方式生产。采用数控铣床(或加工中心)加工电极,可保证电极的加工精度,减小试模时间,减少模具的废品率和返修率,减少钳工劳动量。
对于一些外形复杂,精度要求高的锻件,靠模具钳工采用常规模具制造方法保证某些外形尺寸而采用CAD/CAM技术可以对这些复杂的锻件进行精确的尺寸描述,确定合理的分模面,保证合模精度,从模具制造这一环节确保产品精度。
CAD/CAM/CAE技术可以进行有限元分析,对关键部位的尺寸设计是否合理可以提供修改依据,从而在为客户提供高质量锻件的同时,也为客户的设计提供了依据,加强了与客户的合作。
成形是模锻过程中最重要的工步,模锻件的几何形状是靠锻模来保证的,模锻过程中要全面考虑各种因素,尤其是对生产中可能发生的或已暴露出的问题,在模具设计时应采取措施减轻后续工序的加工难度。按照这一原则在预防为减少模锻件开裂与变形,提高锻件合格率方面,可以有针对性地采取一些对策和措施。如锻件的某些部位在切边和冲孔时易变形而影响产品质量时,可在锻模设计上适当增加相应变形部位的加工余量予以补偿,这一点对于切边时锻件变形大的薄法兰更为重要。对一些带有杆部且杆部直径相对较小的锻件,在切边和热处理过程中会产生有规律的几何变形,而用冷校正方式无法或难以校直。如某厂生产的TS60曲轴,可根据实践经验和统计数据预先将中心线在一定范围内变形方向反向偏移一定的预补反变形量。

3、合理设计锻压工艺�
目前,一般企业无健全的工艺试验室,缺乏工艺试验条件,客观上要求工艺方案必须正确,一次成功。尤其步入市场经济以后,企业负责人要求锻造技术人员只能成功,不许失败,这就给工艺设计人员带来了较大的困难,要求工艺人员要具有较高
的水平,但即使具有丰富实践经验的工艺人员也难免会感到棘手,一旦失误就会造成较大损失。
对于切边时存在容易撕裂部分的锻件可在设计飞边槽时有意减薄薄弱部分飞边桥部的高度,以降低切飞边时此处的切割厚度。如S195连杆,材料为45钢,锻后冷切边,大头搭子部位由于截面形状小、料薄,在切边时经常出现搭子及附近筋部撕裂,废品率高。若改为锻后余热切边则可提高切边质量,但由于切边受模锻生产节拍的限制,效率低。而在设计锻模时减薄此处飞边桥的高度,减少此处飞边冲裁力,可以大大减少切边撕裂。�
对于冷挤压工艺,必须最大程度地软化毛坯及减少变形时的磨擦力,严格控制变形程度和各工序变形程度的合理分配。
一般低碳钢、碳钢及低碳合金钢的软化退火工艺为:加热至760℃保温4h,以20℃/h的冷却速度冷到680℃保温3h,再以20℃/h的冷却速度冷却到640℃后随炉冷却到350℃出炉。硬度一般可达125~155HB。�
含碳量小于0.2%的碳钢,钢材经退火后硬度可小于120HB。钢材经软化退火后再经滚光、酸洗、磷化、皂化后再涂猪油拌MoS�2润滑,可降低变形负载,有效减少凸模、压模圈、接头体的断裂失效。�
采用多工序小变形的冷挤压方法能有效地降低模具承受的单位挤压力,工序间坯料可不进行软化处理,使模具寿命得以延长。国内某些厂家在挤压生产时贪图一时之便,减少挤压工序,虽然也能把样品(或产品)做出,但模具负荷太大,容易出现断裂失效。这种急功近利的做法是我国冷挤压工艺曾经一轰而起未能迅猛发展的主要技术原因之一。�
采用锻模CAE软件,可以分析材料的流动情况、磨擦阻力以及材料的充腔溢料情况,帮助设计人员有效合理地进行工艺设计。

4、合理的模具结构设计�
模具结构设计主要考虑导向精度合理、冲裁间隙恰当、刚性好,还要考虑尽量采用组合式模具。
模架应有良好的刚性,不要仅仅满足强度要求,模板不宜太薄,在可能的情况下尽量增厚,甚至增厚50%。多工位模具不宜仅用2根导柱导向,应尽量做到4根导柱导向,这样导向性能好。因为增加了刚度,保证了凸、凹模间隙均匀,确保凸模和凹模不会发生碰切现象。
浮动模柄可避免压力机对模具导向精度的不良影响。凸模应夹紧可靠,装配时要检查凸模或凹模的轴线对水平面的垂直度以及上下底面之间的平行度。�
在冷挤压时,凸模和凹模的硬度要合适,要充分发挥强韧化处理对延长寿命的潜力。如W6Mo5Cr4V2钢冷挤压凸模,当硬度≥60HRC时可正常使用,寿命为3000~3500件。但如果凭经验认为硬度低、塑性好,寿命一定延长时就会大失所望,当硬度为57~58HRC挤压工件时,凸模的工作带会镦粗。某厂检测挤压第1件以后凸模的工作带尺寸发现,镦粗增大量为0.01~0.04mm。�
对于热挤凹模就不能套用冷挤摸的经验,当把3Cr2W8V钢热挤凹模的硬度值从>40HRC降到37~38HRC时,使用寿命从1000~2000次提高到6000~8000次。�
根据经验,不同的锻压设备上的模锻对锻模的硬度要求不尽相同,即使在同一种锻压设备上的模锻,锻不同的产品对模具的硬度要求也不相同。�
在锻件飞边切除时,凸模底要尽量与锻件的上侧表面相吻合。如钢丝钳模锻件热切飞边时,切飞边凸模底部的凹形要与钢丝钳柄部的弧形相吻合,否则在切飞边过程中,切飞边凸模易使锻件向一侧翻转,使凸模和凹模损坏。一般情况下,冲裁间隙放大可以延长切飞边模寿命。

5、合理选择模具材料�
根据模具的工作条件、生产批量以及材料本身的强韧性能来选择模具用材,应尽可能选用品质好的钢材。据有关资料介绍,模具的制造费较高,而材料费用一般仅是模具价格的6%~20%。�
对模具材料要进行质量检测,模块要符合供货协议要求,模块的化学成份要符合国际上的有关规定。只有在确信模块合格的情况下,才能锻造。大型模块(100kg以上)采用电渣重熔钢H13时要确保内部质量,避免可能出现的成份偏析、杂质超标等内部缺陷。要采用超声波探伤等无损检测技术检查,确保每件锻件内部质量良好,避
免可能出现的冶金缺陷,将废品及早剔除。

6、合理制定模具钢的锻造规范�
根据碳化物偏析对模具寿命的影响,必须限制碳化物的不均匀度,对精密模具和负荷大的细长凸模,必须选用韧性好强度高的模具钢,碳化物不均匀度应控制为不大于3级。Cr12钢碳化物不均匀度3级要比5级耐用度提高1倍以上。滚丝模的碳化物不均匀度为5~6级时最多滚丝2000件,而碳化物不均匀度提高到1~2级时可滚丝550000件。如果碳化物偏析严重,可能引起过热、过烧、开裂、崩刃、塌陷、拉断等早期
失效现象。带状、网状、大颗粒和大块堆集的碳化物使制成的模具性能呈各向异性,横向的强度低,塑性也差。
根据显微硬度测量结果,碳化物正常分布处为740~760HV,碳化物集中处为920~940HV,碳化物稀少处为610~670HV,在碳化物稀少处易回火过度,使硬度和强度降低,碳化物富集区往往因回火不足,脆性大,而导致模具镦粗或断裂。�
通过锻造能有效改善工具钢的碳化物偏析,一般锻造后可降低碳化物偏析2级,最多为3级。最好采用轴向、径向反复镦拔(十字镦拔法),它是将原材料镦粗后沿断面中两个相互垂直的方向反复镦拔,最后再沿轴向或横向锻成,重复一次这一过程就叫做双十字镦拔,重复多次即为多次十字镦拔。�
而对于直径小于或等于50mm的高合金钢,其碳化物不均匀性一般在4级以内,可满足一般模具使用要求。

�7、合理选择热处理工艺
热处理不当是导致模具早期失效的重要原因,据某厂统计,其约占模具早期失效因素的35%。
模具热处理包括锻造后的退火,粗加工以后高温回火或低温回火,精加工后的淬火与回火,电火花、线切割以后的去应力低温回火。只有冷热加工很好相互配合,才能保证良好的模具寿命。
模具型腔大而壁薄时需要采用正常淬火温度的上限,以使残留奥氏体量增加,使模具不致胀大。快速加热法由于加热时间短,氧化脱碳倾向减少,晶粒细小,对碳素工具钢大型模具淬火变形小。对高速钢采用低淬、高回工艺比较好,淬火温度低,回火温度偏高,可大大提高韧性,尽管硬度有所降低,但对提高因折断或疲劳破坏的模具寿命极为有效。通常Cr12MoV钢淬火加热温度为1000℃,油冷,然后220℃回火。如
能在这种热处理以前先行热处理一次,即加热至1100℃保温,油冷,700℃高温回火,则模具寿命能大幅度提高。我们在70年代初期对3Cr2W8V钢施行高淬、高回工艺热处理钢丝钳热锻模具也取得良好效果,寿命提高2倍多。采用低温氮碳共渗工艺,表面硬度可达1200HV,也能大大提高模具寿命。
低温电解渗硫可降低金属变形时的摩擦力,提高抗咬粘性能。使用6W6Mo5Cr4V钢制作冷挤压凸模,经低温氮碳共渗后,使用寿命平均提高1倍以上,再经低温电解渗硫处理可以进一步提高寿命50%。模具淬火后存在很大的残留应力,它往往引起模具变形甚至开裂。为了减少残留应力,模具淬火后应趁热进行回火,回火应充分,回火不充分易产生磨前裂纹。对碳素工具钢,200℃回火1h,残留应力能消除约50%,回火2h残留应力能消除约75%~80%,而如果500~600℃回火1h,则残留应力能消除达90%。�
某厂CrWMn钢制凸模淬火后回火1h,使用不久便断裂,而当回火2.5h,使用中未发现断裂现象。这说明回火不均匀,虽然表面硬度达到要求,但工作内部组织不均匀,残留应力消除不充分,模具易早期破裂失效。
回火后一般为空冷,在回火冷却过程中,材料内部可能会出现新的拉应力,应缓冷到100~120℃以后再出炉,或在高温回火后再加一次低温回火。�
表面覆层硬化技术中的PVD、CVD近年来获得较大的进展,在PVD中常用的真空蒸镀、真空溅射镀和离子镀,其中离子镀层具有附着力强、浇镀性好,沉积速度快,无公害等优点。离子镀工艺可在模具表面镀上TiC、TiN,其使用寿命可延长几倍到几十倍。离子镀是真空蒸膜与气体放电相结合的一种沉积技术。空心阴极放电法(HCD法)是先用真空泵抽真空,再向真空泵通入反应气体,并使真空度保持在10-5~10-2Pa范围内,利用低压大电流HCD电子枪使蒸发的金属或化合物离子化,从而在工作表面堆积成一层防护膜。为提高镀敷效率,一般在工件上施加负电压。�
锻模的表面处理技术国内应用不太多,这一领域大有开发的必要。整体模腔的渗碳、渗氮、渗硼、碳氮共渗以及模腔局部的喷涂、刷镀和堆焊等表面硬化支持都是很有发展前途的,突破这一领域将使我国制模技术得到很大提高。�
模具失效以后的焊补技术,国内90年代初期就有工厂进行研究和应用,如青海锻造厂,焊补后的锻模寿命可提高1倍。

8、合理确定机械加工制造工艺和加工精度�
采用先进设备和技术确保每副模具具有高精度和互换性以保证锻模所要求的高精度和重复精度。制造工艺首先要解决加工后的加工变形与残留应力不能太大。粗加
工时最好不要使表面粗糙度Ra>3.2μm,特别应注意在模具工作部分转角处要光滑过渡,减少热处理产生的热应力。�
模腔表面加工时留下的刀痕、磨痕都是应力集中的部位,也是早期裂纹和疲劳裂纹源,因此在锻模加工时一定要刃磨好刀具。平面刀具两端一定要刃磨好圆角R,圆弧刀具刃磨时要用R规测量,绝不允许出现尖点。在精加工时走刀量要小,不允许出现刀痕。对于复杂模腔一定要留足打磨余量,即使加工后没有刀痕,也要再由钳工用风动砂轮(或用其它方法)打磨抛光,但要注意防止打磨时局部出现过热、烧伤表面和降低表面硬度。�
模具电加工表面有硬化层,厚10μm左右,硬化层脆而有残留应力,直接使用往往引起早期开裂,这种硬化层在对其进行180℃左右的低温回火时可消除其残留应力。
磨削时若磨削热过大会引起肉眼看不见的与磨削方向垂直的微小裂纹,在拉应力作用下,裂纹会扩展。对CrWMn钢冷挤凹模采用干磨,磨削深度为0.04~0.05mm时,使用中100%开裂;采用湿磨,磨削深度0.005~0.01mm时,使用性能良好。消除磨削应力也可将模具在260~315℃的盐浴中浸1.5min,然后在30℃油中冷却,这样硬度可下降1HRC,残留应力降低40%~65%。对于精密模具的精密磨削要注意环境温度的影响,要求恒温磨削。
锻模粗加工时要为精加工保留合理的加工余量,因为所留的余量过小,可能因热处理变形造成余量不够,必须对新制锻模进行补焊,若留的余量过大,则增加了淬火后的加工难度。
当锻模燕尾支承面与分模面平行度超过要求时,会使锻模锁扣啃坏或打裂,重者会打断锤杆甚至损坏锤头,所以在锻模加工中除对模腔尺寸按图纸要求加工外,对其它各部分外形尺寸、位置度、平行度、垂直度都要按要求加工并严格检验。有些厂对小型锻模热处理后用平面磨床磨削上下平面,对大型锻模用龙门刨床以刨代刮,保证制造精度。
锻模模腔的粗糙度直接影响锻模寿命,粗糙度高会使锻件不易脱模,特别是中间带凸起部位,锻件越深,抱得越紧,最后只能卸下锻模用机加工或气割的方法破坏锻件。由于粗糙度值高会使金属流动阻力增加,严重时模锻若干件以后会将模壁磨损成沟槽,既影响锻件成形,也易使锻模早期失效。
工作表面粗糙度值低的模具不但摩擦阻力小,而且抗咬合和抗疲劳能力强,表面粗糙度一般要求Ra=0.4~0.8μm。
模具的制造装配精度对模具寿命的影响也很大,装配精度高,底面平直,平行度好,凸模与凹模垂直度高,间隙均匀,亦可获得相当高的寿命。

❷ 做浇铸模具用什么材料好

浇注模一般情况可用铸铁,他不是用普通铸铁,铸铁中有一种叫合金铸铁的,它的密度高,耐高温不变形。也便于加工。

❸ 如何做个简单又便宜的模具

你查看翻砂技术吧,就是用土翻模,你说的那个受不了热胀冷缩的,或象做青铜器一样做个泥范。

❹ 耐火浇注料支设模具时,应当符合哪些要求

耐火浇注料的模具制设
一般规定
(1)气动浇注,振动浇注,自流平浇注等方法安装耐火材料时需要模具。
(2)模具在使用前应彻底清洁并做防水处理。
(3)模具间连接缝应平整无阶梯、密封紧固,以防止振打时发生耐火材料从模件缝中渗出。
(4)在进行模具安装时,应进行润滑或涂上特殊的模件油以防止模具黏着耐火材料。
(5)模具应用钢制或木制的刚性防水的材料制成;采用木模时应采用不低于10毫米的多层板,对于有严格弧度要求的部位可采用不低于5mm的模板,但在支设时应保证做到不涨模、不跑模。
(6)模板应具有足够的承载强度、刚度和稳定性,应能承受浇注料的重量和压力引起的振动,在安装耐火材料时不会发生弯曲和破裂,还要方便模具的拆卸。
(7)模具支设应保证衬里结构和各部位尺寸符合设计文件要求,
(8)模具支设好后预留的浇注口应足够大,可以在上部看到耐火材料的自由表面。
荣盛耐材提供

❺ 提高压铸模具寿命的措施

提高压铸模具寿命的措施

致使压铸模失效的主要原因是:①热胀冷缩的交变应力,长期频繁的反复循环,在模具表面出现热疲劳龟裂纹;②由于热应力及机械应力引起的模具整体开裂、破损;③在压射力和热应力的作用下,模具会在强度最薄弱处萌生裂纹,使型腔碎裂;④化学腐蚀、机械磨损、冲刷侵蚀、熔损侵蚀造成的模具侵蚀;⑤受到锁模、插芯压力和充填压力作用使模具产生的塑性变形。这些模具失效缺陷出现的原因是复杂多样的,下边从实际应用方面探讨一些提高压铸模具寿命的措施。

1 压铸模具材料的选用

为提高热冲击韧度,目前常用的H13钢的化学成分纯净度要求为:优级钢S 含量(质量分数,下同)要小于0.005%;超级H13 钢要求S 含量小于0.003%;P含量小于0.015%。钢的晶界无共晶碳化物夹杂,大块状的共晶碳化物和杂质强度极小,不能抵抗热疲劳,降低了钢材的塑性,是龟裂发生的起源点。要使用电渣重熔炉的精炼钢,它不仅纯净度高,还具有组织致密、优良的热疲劳抗力、抗热裂性好、优良的韧性及塑性,优良的抛光性、较好的异向同性等性能。钢材的均一性要求材料的组织要均匀,钢坯具备任意方向力学性能同性,不要有纵、横、深方向的性能差异。

正确选用模具材料,采用高强度合金材料可以提高模具使用寿命。优选用瑞典8407、德国2344、美国H13 (4Gr5MoVlSi)、日本SKD61 材料。日本日立的DAC55、ZHD435 在高硬度时有很好的韧性及抗高温强度,模具寿命也很高。

2 压铸模具的热处理

采用不同的热处理工艺会使压铸模品质性能不一样。H13 模具钢的热处理工艺和热处理后的金相组织应参照北美压铸学会(NADCA 207—2003)的规定。建议由模具钢材生产商负责模具的热处理,避免因为材料和热处理的厂家不同而引起品质不同。

H13 钢采用高压液氮气冷高真空炉淬火为好,可以有效防止模具表面的脱碳、氧化、变形和开裂。把淬火温度升高到1020~1050℃,根据模块材料的尺寸大小,和各个零部件要求的强度和韧性,适当控制温度和保温时间,使合金碳化物充分溶人奥氏体,这样可以减少模具因热处理碳化物溶解不充分,残留在晶界之间而造成的模具龟裂。但要注意钢的临界点Acl和Ac3及保温时间,防止奥氏体粗化。淬火后用不同温度分3 次回火,特别注意回火的效果,如果还要进行氮化处理,可以减少一次回火处理。

模具加工时产生的切削应力、电火花放电变质层的应力、和压铸时产生的热疲劳应力,可以通过退火来减轻或消除。模具应定期退火处理消除应力:第一次去应力退火应安排在淬火之前(退火温度700~750℃),第二次去应力退火应安排在试模合格后的量产之前,再在压铸1 万模、3 万模时各退火处理一次,氮化一次可以代替一次退火处理。对H13 钢退火消除应力的温度比淬火时最后一次回火的温度低20~40℃,保温时间为1.0~1.5 h。

合理选择模具的硬度(HRC),美国AISI H13 ESR类材料用于压铸模具,如果硬度偏低,易出现粘模和早期龟裂,如果硬度太高又可能开裂,所以一般建议:锌合金压铸模硬度(HRC)为47~52;中、小型的铝、镁合金压铸模为46~48;尺寸大的铝、镁合金铸件和比较厚或形状复杂件的模具,应适当降低硬度(HRC)为44~46。日立的DAC55、ZHD435 及一胜百的DIEVAR钢在高硬度时有很好的韧性及高温强度,应用时硬度(HRC)可以比H13 提高2~4。

对压铸模的型腔表面容易出现粘模的部位和所有的型芯,应选用氮化、碳氮共渗等表面强化处理,以减少粘模或侵蚀。目前使用日本的KANUC 处理的比较多。如需氮化,型面的氮化层总深度应低于0.2~0.3mm,应根据铸件壁厚由厚到薄控制在0.04~0.08mm,且应无化合物白亮层,防止过厚的白亮层碎裂后引起模具龟裂。对容易粘模部位的零件,可以每压铸1~2 万模进行一次氮化等表面处理。当模具压铸8~10 万模次之后,由于硬度降低容易出现粘模时,也可以进行氮化处理。每次退火和氮化之前、后都要对模具表面进行抛光处理。为防止模具型腔在量产之前出现氧化锈蚀,在试模合格后,应对模具进行530~560℃保温1.5~2.0 h 的`预氧化热处理。

3 压铸模具的设计

压铸件壁厚应尽量均匀(一般小件厚度为2.5±1mm,中件厚度为3.0±1 mm,大件厚度为4.0±1mm),棱角过渡要有圆角或斜坡以减小应力集中,可使用筋条结构消除铸件形成的热节。过厚的压铸件内部组织晶粒粗大,会形成气孔、缩松、氧化、内部裂纹,并伴随有应力源产生,以致其强度和耐用性能会低于加强筋辅助结构形成的产品。

模具的易龟裂部位和易损伤部位尽量采取镶件结构,损坏后便于维修和更换。但成型零件上的镶拼孔,包括型芯孔至模具的边缘或附近的另一孔的距离不要太小,并且镶拼孔的内角要有较大的圆倒角,以免成为模具早期龟裂的薄弱部位。

提高模具设计刚性,要分析模具型腔各个部位的受力情况。型腔受到的力有合金液充填时的压力、胀型力、冲击力,还有脱模时的拉力、摩擦力,温度高低变化产生的热应力,开合模、抽插芯时受到的压力、拉力、预紧力等。设计时要使模具中各组件、各部位都具有足够的厚度、宽度,使模具有足够的刚性以承受各种应力。还要使这些受力达到适当的平衡(这一点很重要),以防止模具变形、开裂。制造时注意模具的细薄截面、模块的凹角根部是模具出现断裂的敏感部位,要保证其配合精度,如果模块配合的预紧力过大,它会把合模力集中到一点上,这是模具出现大面积断裂的主要因素。

为了较好的预防模具出现整体变形。正确设计模具型腔的受力中心位置,使其尽量靠近压铸机的受力中心。动模背后的两个垫块要尽量支撑在模具的型腔镶块上,不要只支撑在型腔镶块外的套板上;动模背后中间的支撑柱或支撑块的支撑面积要足够大,否则会使支撑块的端面(甚至使压铸机的模具安装板面),容易被压变形而失去支撑的效果。

模具上有凹角的部位容易产生应力集中。产品转角处尽量要有较大的过渡圆角,避免出现窄而深的凹角、凹槽。铝、镁合金压铸模具的型腔转角半径应大于1.0 mm,表面粗糙度要小,避免圆角处早期开裂。在内浇口附近,尽量加大圆角半径,能够较好的延缓模具早期龟裂纹的出现。合理选用镶块、活动滑块组合结构,避免模块上出现较锐的尖角;并使镶拼接触密封面的结合面积要比较大,要使滑块出现退让时,也不会出现铝水从密封面窜入到滑块的导滑槽里;为防止运动卡滞,滑块的侧面使用斜面配合。

正确设计浇注系统,设计内浇口的位置和充填流向时,尽量防止高速充填的铝水正面喷射冲击到型壁或型芯。设计内浇口截面大小时,如果选用的压射充填速度太高,有大量的动能减速后转变成热能传递到模具上,使模具温度升高,促使模具出现粘模、龟裂、冲蚀缺陷。压铸铝水的最大充填速度不应超过56m/s,充填速度以≤46 m/s 为好。设计内浇口的厚度时,在保证产品表面品质的情况下,还是选用厚而大一点的内浇口为好,这样可以增加流量,又不增加对模具的冲击力。

要正确选择各组件的配合公差和表面粗糙度,因模具受热不均匀和膨胀不均匀,会使配合公差产生变化,会使部件运动失灵而导致模具表面损伤,也会使动、定模套板之间的合模间隙增加,引起飞边和飞料。为防止飞料,在分型面上,动、定模型腔镶块平面应比动定模套板平面略高,一般在0~0.080 mm 范围内,特别要求紧密合模后,动、定模套板的间隙要在0.030~0.100mm 范围内。在套板上的排气道最浅处的深度为0.12~0.15 mm,它一定要包括合模后动、定模套板的间隙。只有这样才能防止飞边、飞料和粘模。尽量让套板各部位的分型面与模块的分型面一致,从模块到套板一样平齐,减少分型面的台阶,便于排气和防止飞边粘模。

尽量不要在内浇口附近的型腔平面上设置产品的字样、标记和顶杆。这些都会引起模具过早的龟裂,也会使字样标记过早的变得不清晰。

尽量利用-Q2图,使模具能够很好的与压铸机进行匹配,提高产品的合格率和生产效率,延长模具的使用寿命。

4 压铸模具的冷却和加热系统的设计

为了能够调控模具温度,防止模具变形和龟裂,一定要给模具设计冷却、加热温控系统。通常在模具模块的内部开设(6~12)mm孔径的管道,在型芯和模块中开设(3~12)mm 冷却孔,通水进行冷却,通热油进行加热。在没有模温机的压铸厂,也可以使用电加热管(要控制发热温度≤400℃) 和测温仪置λ模具,进行自动加热来预热模具。

在型腔模块的背面,加工出(6~8)mm 的孔,此孔要距离型腔表面(25±5)mm,要距离冷却水或加热油通道在50 mm 以上,插入热电偶连接在压铸机的测温仪器上。

在模具的横浇道、分支浇道、内浇口附近,在铸件厚壁处的型腔、型芯等模具吸收热量比较多的部位要通水冷却。对薄壁处的型腔,对远离内浇口的滑块抽芯,和模具型腔的一些吸收热量少、散热快的部位,要设计用热油或用电加热管加热模具。一般通入的热油温度为200~350℃。注意模具的冷却水通道距离模具表面或模具转角要有足够的距离,以避免这些部位的型面出现早期龟裂或开裂。

模具每个进水管接头要有开关,能控制冷却水的流量,以便调节模具各部位的温度。冷却水管道里出现的锈蚀和集垢,会影响模具的冷却效果,要及时清除。模具外接的管道和接头建议使用铜材和不锈钢材质,以防生锈后堵塞管道。

5 压铸模具的制造加工对模具寿命的影响

模具制造的尺寸精度和配合精度要高,密封接触的配合面,必须密封配合,密封接触的面积要大,防止铝液钻入。尽量避免人为因素造成的烧焊修补处理,因模具烧焊修补过的部位,很容易出现龟裂。

电脉冲放电加工后的型腔表面会产生出一个变质层,这一层的化学成分、金相组织、力学性能( 强度、硬度、韧性) 等都发生了改变,变质层又硬又脆,并有应力和大量的微裂纹,会引起模具早期龟裂;电脉冲或线切割放电精细加工时,应尽量采用低的电流及高的频率,以减小模具表面的过烧深度。使用好的电火花专用油液,可以起到冲洗、冷却、润滑、绝缘、防电离和减轻变质层的作用。放电时浸油比冲油能更好地减轻变质层。无论变质层深浅,它在模具表面均有极大的应力,若不消除其白亮层和残余应力,在使用过程中,模具表面就会较早的产生龟裂、冲蚀和开裂。

模具型腔精加工时,走刀量要小,不要留下刀痕,必要时需留下打磨抛光的余量。模具型腔的所有表面,即使没有留下加工刀痕的表面,都要进行一次打磨抛光,用以消除刀具加工或放电加工产生的硬化层和白亮层。但要注意,打磨时不要让模具局部过热,以防烧伤模具表面和降低模具的硬度。消除硬化层、白亮层和去除应力的方法有:①用油石打磨、研磨抛光、化学溶蚀去除;②喷 玻 璃丸的方法既可以去除表面熔化凝固层,消除残余拉应力,还可以形成压应力,是目前延缓龟裂的好方法;③在不降低硬度的情况下,低温回火也可大幅度降低模具的表面应力。模具型腔表面抛光时,粗糙度要以产品而定:①薄壁、表面要求光亮的产品表面位置,型腔表面要适当抛光,表面粗糙度Ra 为0.2~0.4μm;②厚壁、表面要求一般的产品表面处,型腔表面可抛光,表面粗糙度Ra 为0.4~0.8μm;③一般不要求抛光为镜面,要使脱模剂能在模具表面均匀附着,但刀痕一定要抛光,以免模具过早的出现龟裂;④要注意交叉打磨,模具表面打磨过的痕迹,不要有明显的打磨方向。

6 压铸工艺和生产操作对压铸模具寿命的影响

增加压铸铝合金中的铁含量,可以有效地减轻粘模程度,一般要求铝合金的铁含量≤1.5%,实际生产中铝水的铁含量控制在0.65%~0.90%范围内为好。在压铸过程中铝液温度波动应在±10℃之内,ADCl2铝合金春、秋季浇注温度建议小于660℃,冬、夏季温度可以上下变化10℃,这样可以消除季节性的缺陷。模具内浇口附近容易龟裂、侵蚀,远离内浇口的部位不容易龟裂、侵蚀,这主要是因为在内浇口附近,高温的铝水传递给模具的热量比较多,致使模具温度比较高。所以在不影响产品品质的前提下,应尽量降低铝水的浇注温度。

在满足成形情形下,尽量使用比较低的低速压射速度和高速压射速度。充填速度过高会造成粘模、冲蚀、龟裂;当低速压射速度较高使金属液包裹较多的气体时,气体在高速压射进入型腔中的低压区会膨胀,气体膨胀产生爆破,气体带动铝液以很高的速度冲击、侵蚀型腔表面,造成型腔表面气蚀缺损(这种气蚀在溢流槽浇口处也会出现),被气蚀的表面也会有裂纹产生。

在满足成形良好的条件下,尽可能选用较小的压力。可以观察壳形和圆形产品,在模具压铸几万模之后,在产品同一部位的外表面比内表面龟裂纹大出很多,这说明在相同的条件之下,模具受到铝液包裹挤压与膨胀拉伸的力量方向不同,致使模具出现龟裂的缺陷大小相差很大;特别是在模具型腔的凹角处,拉伸和热应力都会集中在这里,凹角处会过早的出现龟裂和开裂裂纹;而在模具的凸角和型芯表面受到挤压和热冲击力,虽然会出现粘模,但出现应力集中情况很小,模具不容易出现龟裂。可见铝液压力的大小和受力方向对模具龟裂的影响是很大的,有时为了配套不容易出现龟裂模块的寿命,可以采用比较好的模具材料或热处理的方法,来提高容易龟裂模块的寿命。

压铸时模具表面温度由100℃上升到610℃,比200℃上升到610℃容易引起龟裂,表面温度由200℃上升到680℃,比200℃上升到610℃更容易引起龟裂;模具在500℃以上保持6 s比保持3 s也是更容易引起龟裂,所以一定要使模具承受的温度低、温差变化量比较小、处于高温的时间短。一般产品压铸开模后的2~3 s时测量模具表面的温度(或用热电偶测量模具内部温度) 应不高于浇注的合金液温度的40%~45%,即铝合金模具温度应小于320℃,以200~280℃为好。合模时模具表面的温度应不低于合金浇注温度的20%,一般以130~210℃为好。

压铸铝合金模具预热至180~300℃再浇注压射,比用铝液直接浇注压射来预热模具,能延缓模具表面龟裂纹的出现。因为用铝液直接浇注压射来预热模具,模具表面承受到的温度差比较大。模具预热后压铸的前10~20 模铸件,要使用低速压射,以减小铝液与模具接触的紧密程度,降低热量传递给模具的速度,达到缓慢加热的目的。

压铸操作时均匀喷涂脱模剂,可以减轻铝液对模具的粘模和磨损。为了防止脱模剂对模具激冷,冬天对水基脱模剂要预热到20~30℃为好。喷脱模剂要形成雾状,喷嘴应距型面(20±10)cm,斜向模面角度15°±5°的效果最好。不可喷涂过多脱模剂,喷涂时间控制在0.5~2.5 s 之间;禁止喷洒、浇灌式的喷涂,以防对模具表面急速的激冷。可以采用动、定模多次交换喷涂的方法,以减小激冷的速度。另外,铸件顶出后,要在顶杆头部喷涂上涂料得到润滑之后再退回,以防顶杆运动卡滞。

对许多模具,常用喷 玻 璃丸、陶瓷丸或用微电脉冲打磨加粗模具某些部位的粗糙度,甚至在模具表面修出间隔在0.5~1.5 mm细小的网状筋条。这样不仅能防止龟裂延长模具寿命,还能减小铝液的流动速度,消除产品表面的冷隔和花纹;能提高模具表面的吸热速度,使产品表面急速凝固,又因模具表面快速吸热增加了模具表面的温度,加快涂料和水的挥发,消除水的残留,能防止铸件出现气泡和发黑。

7 压铸模的使用和维护保养

模具在安装时,动、定模每半模至少要安装6 个压板螺栓,如果每半模只安装4 个压板螺栓,只要有一个螺栓松动,其他3 个螺栓受力严重失衡,螺栓就会很快被拉变形或拉断,甚至会出现模具被拉而掉下来的事故。

压铸过程中,要及时打磨抛光模具型腔的粘模痕迹,但要注意不要用硬的工具凿伤或敲伤模具。当模具型腔表面粗糙度变大后,要进行很好的抛光处理。当产品全部或部分粘模在模具型腔里时,要由有经验的模具修理人员来处理,以防压铸工处理时损坏模具。

每班给模具滑块、导柱、顶杆涂一次润滑油,每班检查疏通模具的冷却水通道,使其畅通和密封。每班观察模具的分型面和滑块的密封配合情况,对模具的飞边和披缝一定要早发现、早修理,以防其致使模具出现严重的压伤、凹陷、变形及飞料的缺陷。

当模具停产不使用时,最好在压铸最后一模之后,不要给模具再喷刷涂料,如果已经喷涂了涂料,也要用压缩空气吹干净模具表面和深腔里的残留水分,以防模具生锈。每批生产完成后,或在每生产一万模时,要对模具进行维护保养。每次保养时,需涂红丹粉检查模具的变形和密封配合情况,消除间隙防止飞料,消除模块或滑块受力不均衡,防止模块压坏、爆裂。保养后要给模具型腔、抽芯滑块、顶杆、导柱,分型面等涂防锈油。

模具已经出现小范围的冲蚀、掉块、缺损、裂纹缺陷后,在不能做成镶件更换时,只有给模具用氩弧焊修补。为有效地防止压铸模具焊补后容易出现龟裂,焊补时首先要选用模具钢材制造厂家指定使用的氩弧焊焊条,并注意区分在模具淬火处理前后使用的焊条规格有可能不一样。对模具进行氩弧焊之前,先要把模具龟裂等缺陷修磨掉呈现出金属基体,使用电热炉预热模块达到300~450℃(若使用乙 炔 氧焊的火焰慢慢烘烤预热模具,由于预热的范围小,不一定达到要求的温度范围,温度也不均匀,对防止焊补后出现龟裂没有明显的效果。)并把表面清理干净之后再进行氩弧焊,防止焊补时出现气孔;当模具温度高于475℃时要停止焊补,让模具降温后再焊;焊接时注意,一定要隔行焊补,不要一行挨一行焊补,这样可以较好的降低焊接时产生的升温和应力。淬火之后的焊补,再在低于淬火回火温度以下20~50℃,保温2~3h 去应力退火(淬火之前的焊补,退火温度是750℃)这样可以很好的消除焊接时产生的应力。

对于模具表面粘附的涂料烧结集碳,除用油石和砂纸抛光外,用气动喷投 玻 璃丸或喷陶瓷丸的方法,不仅能均匀有效的清除掉集碳,还不影响模具的尺寸精度。

;

❻ 模具制作厂家如何在生产过程中能够保证模具的质量

1、模具的设计是提高模具质量的最重要的一步,需要考虑到很多因素,包括模具材料的选用,模具结构的可使用性及安全性,模具零件的可加工性及模具维修的方便性,这些在设计之初应尽量考虑得周全些,以保证前期模具制造的质量。
2、在确保制品质量的前提下,模具所能完成的工作循环次数或生产的制件数量。模具的制造过程也是确保模具质量的重要一环,模具制造过程中的加工方法和加工精度也会影响到模具的使用寿命。
3、模具的使用维护:是否属最方便使用、脱模容易、生产辅助时间尽可能的短。对模具主要成形零部件进行表面强化,以提高模具零件表面耐磨性,从而更好地提高模具质量。模具的正确使用与维护,也是提高模具质量的一大因素。
4、有一套完善的品管监控系统,不断的、全方位的检测各个进程的品质。以确保模具制造全过程的质量达到标准。

阅读全文

与制作浇注模具如何做到轻便耐用相关的资料

热点内容
fastcool是什么钢材 浏览:483
擦焊接机镜头的是什么膏 浏览:130
新买的白钢锅外面发黄是怎么回事 浏览:109
不锈钢焊管壁厚公司 浏览:562
楼房建筑钢筋图纸怎么看 浏览:272
不锈钢棱形网哪里有卖 浏览:832
天衣无缝贵碗什么生死 浏览:811
楼板钢筋不合格怎么办 浏览:670
不锈钢锅怎么能去锈 浏览:398
不锈钢球如何生产 浏览:252
模具抛光深孔抛不到怎么办 浏览:466
不锈钢雾面钢丝怎么做 浏览:229
如何让不锈钢光洁如新 浏览:476
无缝管材质20是什么意思 浏览:987
钢铁是怎么炼成的是哪个国家的作者 浏览:17
烧火炉膛用什么钢板 浏览:774
夹层玻璃护栏价格多少钱一米 浏览:53
510平方穿32管能过吗 浏览:862
冲击钻打眼时遇到钢筋怎么办 浏览:568
sus不锈钢门是什么门 浏览:658