⑴ 焊接接头的设计
一、焊接接头
焊接结构是由许多部件、元件、零件用焊接方法连接而成的,因此焊接接头的性能质量好坏直接与焊接结构的性能和安全性、可靠性有关。多年来焊接工程界对焊接接头进行了广泛的试验研究,这对于提高焊接结构的性能和可靠性,扩大焊接结构的应用范围起了很大作用。
(1)焊接接头的基本类型
用主要的焊接方法如熔焊、压焊和钎焊都可制成焊接结构,用这些焊接方法连接金属结构形成不可拆的连接接头—焊接接头,分别形成熔焊接头、压焊接头和钎焊接头,从而构成焊接结构。但应用最广泛的是熔焊,这里重点介绍熔焊接头。
1)熔焊接头:熔焊接头由焊缝金属、熔合线、热影响区和母材所组成。而焊缝金属是填充材料和部分母材熔化后凝固而成的铸造组织。熔焊接头各部分的组织是不均匀的,性能上也存在差异。这是由于以上四个区域化学成分和金相组织不同,并且接头处往往改变了构件原来的截面和形状,出现不连续,甚至有缺陷,形成不同程度的应力集中,还有焊接残余应力和变形,大的刚度等都对接头的性能有影响,结果使接头不仅力学性能不均匀,而且物理化学性能也存在差异。为保证焊接结构可靠地工作,希望焊接接头具有与母材相同的力学性能,有些情况下还希望获得相同的物理和化学性能,如导电、导磁、抗腐蚀性能和相同的光泽和颜色等。
就焊缝金属而言银山,往往形成柱状晶铸造组织,一般较母材的强度高且硬,而韧性下降。对于高强度钢,采用适当的工艺措施,如预热、缓冷或采用合适的热输人也可获得要求性能的焊缝金属。一般来说,焊缝金属强度相对母材强度可能要高或低,前者称为高匹配,后者称为低匹配。
宽度不大的热影响区,由于焊接温度场梯度大,各点的热循环大不相同,造成了组织和性能的不同。这种差别和被焊金属的组织成分、焊接热输人有关。特别要指出的是经过焊接热循环后发生的“动应变时效”(热应变时效)会使接头性能恶化。将钢材、铝材等经预应变后,会产生变脆的“时效”现象,这种预应变及时效都是在低温(室温)下发生的,通常称为“静应变时效”。而焊接热影响区经焊接热循环后会产生热应变,焊接的高温加速了时效脆化,所以“动应变时效”大大降低了接头的性能,要注意防止。
熔焊的焊缝主要有对接焊缝和角焊缝,以这两种焊缝为主体构成的焊接接头有对接接头、角接接头、T形(十字)接头、搭接接头和塞焊接头等。根据GB/T 985-1988《气焊、焊条电弧焊及气体保护焊焊缝坡口的基本形式与尺寸》和GB/T 986-1988《埋弧焊焊缝坡口的基本形式与尺寸》常用的焊缝坡口基本形式与所构成的上述接头形式如图5 -1所示。图5 -1中给出了对接接头(见图5-1 a~n)、角接接头(见图5 -1o~u) 、T形和十字接头(见图5 -1 v~Y及z、a')及搭接接头(见图5 -1 b' 、c')的坡口形式、尺寸、熔化形成的焊缝金属(图中用细实线表示)。由符号字母代表的有关尺寸见表5-6。表5-6是参照GB/T 985-1988 , GB/T 986-1988标准规定列出的。选择哪一种坡口形式除按照上述两标准外,也可按行业和企业标准由焊件厚度确定,并且有一个合适的区间。例如厚度为30mm的板对接,既可以选择图5 -1 i所示的双Y形坡口(由表5-6可查得:用焊条电弧焊时,该坡口适于12~ 60mm厚的板;用埋弧焊时,适于24~60mm厚的板),也可以选择图5 -1 m所示带钝边的双U形坡口。无论选择哪一种坡口形式,都首先模樱要保证接头质量,同时还要考虑经济性。
电渣焊接头是熔焊接头中重要的一种接头。当焊件厚度大于30mm时即可以考虑采用电渣焊接头,特别是大断面的焊缝,例如焊件厚度大于60 mm,则电渣焊比电弧焊接头效率要高。常用电渣焊接头的基本形式如图5 -2所示,各种形式电渣焊接头尺寸见表5 -7。当工件采用电渣焊时要使工件位置做到焊缝由下至上,即适于垂直位置焊接的焊缝。电渣焊焊缝由焊接材料和母材边缘被高温的渣池熔化堆积而成,因而焊缝的内外侧应该有挡块,电渣焊适于大和特大焊接截面的焊件,如厚壁压力容器、大直径的轴、大厚度的管道、大机器件的拼焊等。电渣焊旦搏丛的焊件焊后通常要经正火——回火或高温退火热处理,以消除大焊接热输人造成的宽热影响区、粗晶粒、高残余应力的不良影响。
电子束焊接接头是熔焊接头中一种特殊的接头。它是利用聚焦的高速电子流轰击焊件,使电子动能转化为热能而熔化焊接接头的焊缝区而进行的熔焊。其特点是可焊接各种特殊的金属,大厚度,焊缝的深宽比大(可达25 :1)。按其特点应用于核反应堆元件,航空、航天设备中的某些特殊金属、超高强度钢及耐热合金零件的焊接。由于电子束直径细、焊接能量集中,焊接时不加填充金属,形成了电子束焊接头的一些特点。这种接头也有对接、角接、T形接和搭接形式,还有一种类似于电渣焊的叠接的端接形式,只是焊件是贴紧的。
2)压焊接头:除了上述熔焊接头外,电阻焊、摩擦焊、扩散焊、超声波焊、冷压焊和爆炸焊统称为压焊,其中电阻焊和摩擦焊由于其具有高效率的特点,在许多部门得到了广泛的应用。特别是在汽车工业中,电阻焊和摩擦焊应用很普遍,电阻焊中的点焊(包括滚点焊)和缝焊多是采用搭接接头,凸焊是点焊的一种变异,但接头形式有多种多样,需要根据焊件形状尺寸,设计出适用和巧妙的接头来。高频电阻焊一般为对接,也有采用搭接接头的。电阻对焊显然是采用对接接头,应当指出的是,由于电阻对焊工艺的发展,目前其已经可以焊接100000mm2以上的截面,所以在锅炉压力容器的制造中,特别是钢管道的环缝中,例如石油、天然气的长输管线建设中(包括陆地和海洋),电阻对焊获得了应用。摩擦焊接头通常也是采用对接接头。其他的阻焊接头形式和应用可参考有关资料。
3)钎焊接头:钎焊接头也有多种类型,但基本类型只有对接接头和搭接接头两种。
(2)熔焊坡口形式的选择
熔焊坡口形式根据其形状,可分三类,即基本型,如图5-1b, 1等即I形、V形和单V形、U形和单U形等;还有就是特殊型,如卷边的、带垫板的、锁边的和塞焊、开槽焊等;组合型,顾名思义这是上述各型组合而成,图5 -1中绝大多数都是这种组合型的坡口。坡口形式通常根据工厂条件、工艺要求等考虑以下问题来决定。
1)工厂的加工条件。例如采用双V形、Y形、单边V形、双单边V形、V形、I形等坡口可用气割、等离子弧切割,当然也可用金属切削方法加工。但双U形、带钝边U形、带钝边J形、U形、Y形坡口一般需用刨边机加工(最近也有采用气割加工U形坡口的报道),效率较热切割低。
2)可达性的好坏。采用Y形、带垫板Y形(见图5-1e、f)、带垫板V形、VY形(见图5-1g)、带钝边的U形(见图5-1h)等坡口的接头,施焊时,一般可不需翻转,对内径较小的容器或管道,以及不便翻转的结构,为避免仰焊及不能从内侧施焊,则可采用这种坡口和焊缝形式。
3)减小焊接材料的消耗量,一般熔敷金属量小,焊接材料(焊条、焊丝和焊剂、保护气体)消耗也小,也节省加工时间。同样板厚:Y形比双Y形坡口的熔敷金属量增加最大可达50%,双U形或UY形则更加节省熔敷金属,因此对于大厚度的焊接接头,多采用这种较经济的坡口。
对于不适于电渣焊、电子束焊的特厚件焊缝还采用窄间隙焊。电渣焊的坡口。
4)考虑焊接变形与应力。例如单面焊可能引起角变形和焊缝根部的严重焊接残余应力,此时要考虑材料(母材)特点,采用适当的工艺和坡口形式,以便获得合格的接头。
应该指出,无论是对接焊缝还是角焊缝,其焊缝表面都可以是凹陷的、凸起的或是平齐的,后者有时通过加工来达到。而角焊缝除了上述三种等边角焊缝外,还有三种不等边角焊缝,图5 -3所示直角焊缝的四种形式,除三种等边平的、凹的和凸的直角焊缝外(见图5-3a~c),还有平的不等边直角焊缝(见图5-3d) 。焊脚尺寸K为角焊缝的特征尺寸,角焊缝的焊脚尺寸为焊缝内接等腰直角三角形的直角边,如图5 -3所示。
(3)工作接头、联系接头和密封接头
前述焊接接头的基本类型主要是根据采用的焊接工艺来区分的。实际上也是根据焊接结构焊缝的承载状况来分的。焊接结构的焊缝又可以按直接承受载荷与否分为承载焊缝和非承载焊缝,习惯上又称为工作焊缝和联系焊缝,如图5-4所示。前者将结构中的作用力由一个零件传至另一个零件,焊缝和零(构)件串联在一起,这种焊缝必须进行强度计算。后者的焊缝和零(构)件并联在一起,与零(构)件一起同时受力和变形,焊缝即使破坏,一般也不会影响整个结构的安全工作,传递作用力不是焊缝的主要任务,通常可不进行强度计算。但严格讲,应该认为是整个接头,除焊缝外,还有熔合线、热影响区等承担(串联或并联)直接作用载荷或不直接承受载荷(并联),所以有资料提出了工作接头、联系接头和密封接头。后者的主要任务是防止泄漏,故多属于工作接头。
(4)焊接接头工作应力的分布
图5 -1所示的熔焊接头,如前述主要有对接接头、角接接头、T形接头(十字接头)和搭接接头,塞焊接头实际上也是一种搭接接头。在焊接接头中工作应力的分布不是均匀的,也就是存在应力集中,而各种接头应力集中的情形亦不相同。其中对接接头应力集中最小,形式最简单,力的传递也较少转折,故是最合理的、典型的焊接接头形式。即使如此,对接接头如果出现较大的余高和过渡处圆弧半径较小,则应力集中将增大,图5 -5是对接接头中应力分布的情形。图5-6则是应力集中系数Kσ随余高h和过渡圆弧半径r变化而变化的情形。
T形(十字)接头由母材向焊缝过渡急剧,力的传递转折大,力线扭曲,应力分布不均,易出现较大的应力集中,其应力分布如图5 -7所示。由图5-7a可见,由不开坡口角焊缝构成的T形(十字)接头,即图5 -1a所示T形接头,其最大应力在角焊缝的根部,如Ⅰ - Ⅰ、 Ⅱ - Ⅱ截面的A点和Ⅲ - Ⅲ截面的B点。如开坡口焊透,则应力分布大为改善,如图5-7b所示。T形(十字)接头也是典型的熔焊接头,应用亦很广,该接头在造船业中占所有接头的70%,所以改善其应力分布十分重要。对于Ⅰ形坡口的角焊缝构成的T形(十字)接头,随着焊脚尺寸的增大和θ角的减小(图5-7a),应力集中下降,当θ角小于或大于45°,即属图5-3d的不等边角焊缝时,只有长边顺着力线方向(即θ<45°),才会改善应力分布不均的状况。
由角焊缝构成的搭接接头,其应力分布很不均匀,它不是理想的结构接头形式,在动载和低温时尤其应避免采用。但由于采用搭接接头,装配工作十分简便,焊前准备工作简单,构件收缩量小,故在一些受静载的建筑结构中和用薄板制造的储罐结构中仍被采用。应该指出:搭接接头又可分为正面搭接和侧面搭接,搭接接头中不仅存在角焊缝横截面上应力分布不均的情形(和T形接头角焊缝类似),而且正面和侧面搭接焊缝中的应力分布也不同,侧面搭接焊缝沿焊缝长度的应力分布不均,如图5-8所示。该图是仅有侧面搭接焊缝的情况,A1、A2表示搭接板的截面积,曲线为切应力Tx的分布。由图5-8c可见,当焊缝长度增加,应力分布不均加剧,中段几乎不受力,故一些标准规定了承载搭接焊缝(侧面搭接)的长度。
二、焊接接头的设计
(1)焊接接头的设计特点 优良的接头设计是防止结构破坏的条件之一。实际受力十分复杂的接头,进行设计应考虑以下问题:
1)焊接结构应该优先采用接头(焊缝)形式简单、应力集中小、不破坏结构连续性的,即不使或很少使力线密集或出现转折的接头和焊缝形式。
上述熔焊接头中,对接接头是最符合上述条件的,因此应优先考虑采用,其次应考虑采用T形(十字)接头,而搭接接头则应避免采用,但如上述在一些静载的,不是很重要的结构中为了施工方便仍有采用。
2)在有可能的条件下,尽量将焊接接头布置在工作载荷较小处,以及构件几何尺寸和形状不变的地方。
3)角焊缝的焊脚尺寸不宜过大,搭接角焊缝不宜过长。如前所述,应力分布沿角焊缝截面是不均匀的,截面越大,应力分布不均匀的程度越大,故大截面的角焊缝承载能力低。而焊接材料与工时消耗却随焊脚尺寸成平方地增加。在搭接接头中,正面角焊缝的刚度大于侧面角焊缝,实际强度也大,所以具有正侧面角焊缝的联合搭接角焊缝中的应力分布不均,侧面角焊缝沿焊缝长度方向的应力分布亦不均,故对重要的结构、变形能力差的接头,尤其要注意。
4)钢板在厚度方向上(Z向)性能差,因此组成T形(十字)接头,如要在厚度方向上传递外力,应选用Z向钢。
5)焊接接头刚度大,焊缝未达屈服前变形量很小,故对于作为铰接点的接头(如桁架的节点)可能产生高的附加应力,此时应采取诸如减小焊接截面、改变焊缝位置等措施来增加接头的柔性。
6)充分考虑制造厂的条件,提高设计接头的工艺性。如使焊接结构的接头种类少,采用的焊接方法种类少,接头尺寸单一;施工时的可达性好,包括焊接时的可达性和焊接完成后的可检验性(如射线探伤便于布片,超声探伤有合适的探头移动范围等);施焊性好等等。
7)计算接头时不考虑应力分布不均及焊接残余应力,下面还要介绍到这种计算是作了一些假定和简化的。而对于工作条件苛刻,如在低温或动载下或接头刚度大的场合,则要适当考虑这些因素。而对于在腐蚀环境下工作的焊接结构的接头,接头的细节设计也需要特殊考虑。
(2)焊接接头静载强度的计算
1)以许用应力法为基础的计算
①对接接头强度的计算:图5 -9为典型对接接头及其受力情况,可按表5-8的公式进行计算。由计算公式中可以看出,计算不考虑接头中的应力集中(应力分布不均),也不考虑焊接残余应力,并认为工作应力沿焊缝是均匀分布的。从图5-9a可以看出,当不同厚度的两板对接,厚度差(δ一δ1)超过规定值时(按GB 985标准,允许厚度差1~4mm),需在厚板上削出斜面,斜面长L>3(δ一δ1),也可两面削出斜面。
②搭接接头强度的计算:图5-10为典型的搭接接头及受力情况,这里还列出了塞焊和电铆焊搭接接头(见图5-10g、h),除此以外,搭接接头都是角焊缝组成的,和对接接头强度计算主要是验算对接焊缝的强度一样,搭接接头强度计算则主要是计算角焊缝的强度。在搭接角焊缝的计算中进行了下述假定:
第一,对于此种角焊缝的形状(见图5 -3)都将内接等腰直角三角形的高即
K0,作为计算厚度,不计及焊缝的凸凹度,也不考虑熔深的差别,这样
K0≈0. 7K,K为焊脚尺寸。当熔深较大,如埋弧焊时,可考虑K0≈0. 8K,甚至等于K。
第二,角焊缝一律按计算截面,即计算厚度(习惯称喉厚)截面处受切应力破坏来计算,即使接头承受弯矩,抵抗弯矩产生的应力亦假定为切应力,见表5-8中,式(5-12 )、式(5-15 )、式(5-17 )等等。
第三,不考虑正、侧面角焊缝上应力的差别和焊缝上应力分布的不均,这给计算带来了方便。由于侧面搭接焊缝随焊缝长度的增加,应力不均匀程度增大,上述计算规定限制了计算焊缝的长度。
第四,限制角焊缝的最小焊脚尺寸,一般不应小于4mm,当板厚小于4mm,则焊脚尺寸可与板厚相同。图5 -10各种搭接接头强度的计算见表5-8的相关部分。
③T形接头强度的计算:如图5-7所示,T形接头和十字接头可以由角焊缝构成(见图5 -7a),这种接头会产生应力集中,也可以由对接焊缝,如K形坡口(见图5-7b)焊缝构成,后者应力集中要小得多。表5-8所列包括了两种焊缝的强度计算。可以看出,角焊缝的强度计算与搭接角焊缝的强度计算是一样的,而后者又和对接焊缝强度的计算相同。应该指出,T形接头承受压力(见图5 -11a)时,由于立板可与盖板抵紧,承受压力能力大为提高,可用式(5 -20 )进行强度计算。很多情况下,集中力既不平行、又不垂直于焊缝,可以将作用力分解成两部分,分别进行强度计算,如图5 -11 d及表5-8中式(5 -26 )。
2)极限状态设计法焊缝连接的计算。根据GB 50017-2003《钢结构设计规范》,采用焊接连接时,对于对接接头、T形接头、角接头和搭接接头上的焊缝,采用了对接焊缝、直角角焊缝(图5 -3 )、斜角角焊缝(图5 -13)和对接与角接的组合焊缝(图5-12)等形式。焊缝则应根据结构的重要性、载荷特性、焊缝形式、工作环境以及应力状态等情况选用是否熔透和不同质量等级,如承受疲劳构件的对接焊缝均应焊透且焊缝质量为I 、II级;虽不计疲劳,但要求与母材等强的,也要求焊透,并应不低于II级的焊缝质量;重级工作制的吊车梁、起重量>50t的中级工作制的吊车梁,腹板与盖板间的角焊缝,要求开坡口焊透等。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
⑵ 焊条或焊丝的熔敷效率的定义是
熔敷金属量与熔化的填充金属(通常指焊芯、焊丝、金属粉末)量的百分比。
⑶ 急求焊接速度、电流、电压以及焊接线能量对焊接的影响
手工电弧焊的焊接工艺参数选择
选择合适的焊接工艺参数,对提高焊接质量和提高生产效率是十分重要.
焊接工艺参数(焊接规范)是指焊接时,为保证焊接质量而选定的诸多物理量.
1、焊接电源种类和极性的选择
焊接电源种类:交流、直流
极性选择:正接、反接
正接:焊件接电源正极,焊条接电源负极的接线方法。
反接:焊件接电源负极,焊条接电源正极的接线方法。
极性选择原则:碱性焊条常采用直流反接,否则,电弧燃烧不稳定,
飞溅严重,噪声大,酸性焊条使用直流电源时通常采用直流正接。
2、焊条直径
可根据焊件厚度进行选择。一般厚度越大,选用的焊条直径越粗,焊条直径与焊件的关系见下表:
焊件厚度(mm)
2
3
4-5
6-12
>13
焊条直径(mm)
2
3.2
3.2-4
4-5
4-6
3、焊接电流的选择
选择焊接电流时,要考虑的因素很多,如:焊条直径、药皮类型、工件厚度、接头类型、焊接位置、焊道层次等。但主要由焊条直径、焊接位置、焊道层次来决定。
(1)焊条直径 焊条直径越粗,焊接电流越大。下表供参考
焊条直径(mm)
1.6
2.0
2.5
3.2
4.0
5.0
6.0
焊接电流(A)
25-45
40-65
50-80
100-130
160-210
260-270
260-300
(2)焊接位置 平焊位置时,可选择偏大一些焊接电流。横、立、仰焊位置时,焊接电流应比平焊位置小10~20%。角焊电流比平焊电流稍大一些。
(3)焊道层次
打底及单面焊双面成型,使用的电流要小一些。
碱性焊条选用的焊接电流比酸性焊条小10%左右。不锈钢焊条比碳钢焊条选用的焊接电流小 左右等。
总之,电流过大过小都易产生焊接缺陷。电流过大时,焊条易发红,使药皮变质,而且易造成咬边、弧坑等到缺陷,同时还会使焊缝过热,促使晶粒粗大。
(4)电弧电压
电弧电压主要决定于弧长。电弧长,则电弧电压高;反之,则低。
在焊接过程中,一般希望弧长始终保持一致,而且尽可能用短弧焊接。所谓短弧是指弧长焊条直径的0.5~1.0倍,超过这个限度即为长弧。
(5)焊接速度
在保证焊缝所要求尺寸和质量的前提下,由操作者灵活掌握。速度过慢,热影响区加宽,晶粒粗大,变形也大;速度过快,易造成未焊透,未熔合,焊缝成型不良好等缺陷。
(6)速度以及电压与焊工的运条习惯有关不用强制要求,但是根据经验公式,可知当电流小于600A时,电压取20+0.04I。当电流大于600A时电压取44V。
⑷ 什么叫焊接工艺参数
焊接工艺参数(焊接规范)是指焊接时,为保证焊接质量而选定的诸多物理量.
典型专的有焊接属电流、焊接电压(通常用电弧长)、焊接速度、电源种类极性、坡口形式等等。对于不同的焊接方法,又有着不同的焊接参数,如焊条电弧焊焊条直径,钨极氩弧焊中钨极直径,埋弧焊中焊丝直径等等。视具体情况抄而定。
例如手工焊条电弧焊的工艺参数袭有:
1焊条的选择(焊条牌号的选择,焊条直径选择)
2焊接电流(根据焊条直径来选择,根据焊缝位置选择,根据焊条类型选择,根据焊接经验选择)
3电弧电压
4焊接速度
5焊接层数
6线能量等等
选择合适的焊接工艺参数,对提高焊接质量和提高生产效率是很重要
拓展资料
焊接工艺通常是指焊接过程中的一整套技术规定,包括焊接方法、焊前准备、焊接材料、焊接设备、焊接顺序、焊接操作、工艺参数以及焊后热处理等。因此不同的方法也就有不同的焊接工艺,这里也就带来了焊接工艺参数的zd概念,我们称为保证焊接质量而选定的诸多物理量为焊接工艺参数.焊接工艺是焊接质量优劣的重要保证,故制定焊接工艺的重要性可想而知。
参考资料
焊接工艺——网络
⑸ 什么是焊接工艺参数
焊接工艺参数
1、掌握焊接参数的要求及其选定;
2、熟悉焊接接热参数的确定方法;
教学重点: 焊接电流等工艺参数的选定
教学难点:焊接工艺参数的匹配及其对焊接质量的影响 教学内容:
一、焊接工艺参数的选定 焊接参数是指焊接时为了保证焊接质量而选定的物理量的总称。 焊接参数的选定 主要考虑以下几方面因素:
1)深入的分析产品的材料及其结构形式, 着重分析材料的化学成分和结构因素共 同作用下的焊接性。
2)考虑焊接热循环对母材和焊缝的热作用, 这是获得合格产品及焊接接头最小的 焊接应力和变形的保证。
3)根据产品的材料、焊件厚度、焊接接头形式、焊缝的空间位置、接缝装配间隙 等,去查找各种焊接方法的有关标准、资料(利用资料中经验公式、图表、曲线) 图书等。
4)通过试验确定焊缝的焊接顺序、焊接方向以及多层焊的熔敷顺序等。
5)确定焊接参数不应忽视焊接操作者的实践经验。
二、焊接热参数的确定 通过选择合适的焊接热参数,可以改善焊接接头的组织和性能,消除焊接应 力,防止裂纹产生。 焊接热参数主要包括预热、后热及焊后热处理。
1.预热 预热是焊前对焊件的全部或局部加热。 预热目的有以下几方面:
1)减缓焊接接头加热时的温度梯度及冷却速度,适当延长在 800~500℃区间的 冷却时间,改善焊缝金属及热影响区的显微组织,提高焊接接头的抗裂性。
2)有利于扩散氢的逸出,避免焊接接头延迟裂纹的产生。
3)提高焊件温度分布的均匀性,减少内应力。
2.后热 后热是焊后立即对焊件全部(或局部)进行加热到 300~500℃并保温 1~2h 后空冷的工艺措施,其目的是改善组织,加速氢的扩散和逸出,防止焊接区扩散 氢的聚集,避免延迟裂纹的产生,所以后热也称除氢处理。对于焊后要立即进行 热处理的焊件, 因为在热处理过程中可以达到除氢处理的目的,故不需要另作后 热。
3.焊后热处理 热处理是指将金属加热到一定温度,在这个温度下保温一定时间,然后以 一定的冷却速度冷却到室温的工艺过程。焊接结构的焊后热处理,主要目的是改 善焊接接头的组织和性能,消除焊接残余应力,并能降低接头中的含氢量,提高 结构的几何稳定性。 预热、后热、焊后热处理方法的工艺参数,主要由结构的材料、焊缝的化学 成分、接头的拘束程度、焊接方法、结构的刚度及应力情况、承受载荷的类型、 焊接环境的温度等来确定。
三、手工弧焊的工艺参数
1、焊条种类和牌号的选 焊条的选用应根据钢材的类别、 化学成分及力学性能, 结构的工作条件(载荷、 温度、介质)和结构的刚度特点等进行综合考虑,必要时,需要进行焊接试验来 确定焊条型号和牌号。
2、焊接电流的种类和极性的选择
3、焊接速度 主要取决于焊条的类型。 就是焊条沿焊接方向移动的速度。较大的焊接速度可以获得较高 的焊接生产率,但是,焊接速度过大,会造成咬边、未焊透、气孔等缺陷;而过 慢的焊接速度,又会造成熔池满溢、夹渣、未熔合等缺陷。
4、焊接电流的选择,主要决定于焊条的类型、焊件材质、焊条直径、焊件厚度、 接头形式、焊接位置以及焊接层数等。
5、焊条直径的选择是根据被焊工件的厚度、接头形状、焊接位置和预热条件 来确定的。焊条直径规格为:1.6mm,2.5mm,3.2mm,4.0mm、5.0mm、5.8mm 等。 根据被焊工件的厚度,焊条直径按下表进行选择。
6、焊接层数的选择 多层多道焊有利于提高焊接接头的塑性和韧性,除了低碳 钢对焊接层数不敏感外, 其他钢种都希望采用多层多道无摆动法焊接,每层增高 不得大于 4mm。
7、电弧电压的选择 电弧电压是由电弧的长度
拓展内容:
焊接工艺和焊接方法等因素有关,操作时需根据被焊工件的材质、牌号、化学成分,焊件结构类型,焊接性能要求来确定。
首先要确定焊接方法,如手弧焊、埋弧焊、钨极氩弧焊、熔化极气体保护焊等等,焊接方法的种类非常多,只能根据具体情况选择。确定焊接方法后,再制定焊接工艺参数,焊接工艺参数的种类各不相同,如手弧焊主要包括:焊条型号(或牌号)、直径、电流、电压、焊接电源种类、极性接法、焊接层数、道数、检验方法等。
⑹ 焊接知识的问题
焊接方法的分类焊接方法分类
一般都根据热源的性质、形成接头的状态及是否采用加压来划分。
1、熔化焊
熔化焊是将焊件接头加热至熔化状态,不加压力完成焊接的方法。它包括气焊、电弧焊、电渣焊、激光焊、电子束焊、等离子弧焊、堆焊和铝热焊等。
2、压焊
压焊是通过对焊件施加压力(加热或不加热)来完成焊接的方法。它包括爆炸焊、冷压焊、摩擦焊、扩散焊、超声波焊、锻焊、高频焊和电阻焊等。
3、钎焊
钎焊是采用比母材熔点低的金属材料作钎料,在加热温度高于钎料低于母材熔点的情况下,利用液态钎料润湿母材,填充接头间隙,并与母材相互扩散实现连接焊件的方法。它包括硬钎焊(用熔点高于450℃的钎料铜、银、镍合金进行焊接)、软钎焊(用熔点低于450℃的钎料铅、锡合金进行焊接)等。又分为火焰钎焊、感应钎焊、炉中钎焊、盐浴钎焊、电子束钎焊、真空钎焊。
焊接的特点及应用
焊条电弧焊
电弧是两带电导体之间持久而强烈的气体放电现象。 在焊接中,采用直流电焊机时,有正接和反接两种方法。而大量使用的是交流电弧焊设备,电极的极性频繁交变,不存在极性问题,
1)正接——焊件接电源正极,焊条接负极。一般焊接作业均采用正接法。
2)反接——焊件接电源负极,焊条接正极。一般焊接薄板时,为了防止烧穿,采用反接法进行焊接作业。
埋弧自动焊
电弧在焊剂层下燃烧进行焊接的方法,称为埋弧焊。埋弧焊的引弧、送进焊条一般均由自动装置来完成,因此又称为埋弧自动焊。埋弧自动焊的主要特点
1、生产率高
2、焊接质量高而且稳定
3、节约焊接材料
4、改善了劳动条件
5、适用于平焊长直焊缝和较大直径的环形焊缝。对于短焊缝、曲折焊缝、狭窄位置及薄板的焊接,不能发挥其长处。
埋弧自动焊的工艺特点
1、焊前准备工作要求严格
2、焊接熔深大
3、采用引弧板和引出板
4、采用焊剂垫或钢垫板
5、采用导向装置
等离子弧焊与切割 等离子弧焊的特点
1、能量密度大,温度梯度大,热影响区小,可焊接热敏感性强的材料或制造双金属件。
2、电弧稳定性好,焊接速度高,可用穿透式焊接,使焊缝一次双面成型,表面美观,生产率高。
3、气流喷速高,机械冲刷力大,可用于焊接大厚度工件或切割大厚度不锈钢、铝、铜、镁等合金。
4、电弧电离充分,电流下限达0.1A以下仍能稳定工作,适合于用微束等离子弧(0.2~30A)焊接超薄板(0.01~2mm),如膜盒、热电偶等。
气体保护焊
一、氩弧焊
使用氩气作为保护气体的气体保护焊称为压弧焊。
氩气是惰性气体,可保护电极和熔化金属不受空气的有害作用。
氩弧焊按所用电极的不同分为熔化极氩弧焊和非熔化极氩弧焊两种。
1、非熔化极氩弧焊
电极只作为发射电子、产生电弧用,填充金属另加。
常用掺有氧化钍或氧化铈的钨极,其特点是电子热发射能力强,熔点沸点高(为3700K和5800K)。
2、熔化极氩弧焊
钨极氩弧焊电流小、熔深浅。中厚以上的钛、铝、铜等合金的焊接多选用高生产率的熔化极氩弧焊。
3、氩弧焊的特点
(1)由于氩气的保护,它适于各类合金钢、易氧化的有色金属,以及锆、钽、钼等稀有金属的焊接。
(2)氩弧焊电弧稳定,飞溅小,焊缝致密,表面没有熔渣,成形美观,焊接变形小。
(3)明弧可见,便于操作,容易实现全位置自动焊接。
(4)钨极脉冲氩弧焊接可焊接0.8mm以下的薄板及某些异种金属。
二、二氧化碳气体保护焊
利用CO2作为保护气体的气体保护焊,称为二氧化碳气体保护焊。
它的保护作用主要是使焊接区与空气隔离,防止空气中的氮气对熔化金属的有害作用。
焊接时:
2CO2=2CO+O2
CO2=C+O2
因此焊接是在CO2、CO、O2氧化气氛中进行的。
二氧化碳气体保护焊的特点:
1、焊速高,可实现自动焊,生产率高。
2、为明弧焊接,易于控制焊缝成形。
3、对铁锈敏感性小、焊后熔渣少。
4、价格低廉。
5、焊接飞溅与气孔仍是生产中的难点。
真空电子束焊
真空电子束焊是利用定向高速运动的电子束流撞击工件使动能转化为热能而使工件熔化,形成焊缝。
真空电子束焊的特点:
1、在真空中进行焊接,焊缝纯净、光洁,呈镜面,无氧化等缺陷。
2、电子束能量密度高达108瓦/厘米2,能把焊件金属迅速加热到很高温度,因而能熔化任何难熔金属与合金。熔深大、焊速快,热影响区极小,因此对接头性能影响小,接头基本无变形。
摩擦焊
摩擦焊是利用焊件表面相互摩擦所产生的热量,使端面达到热塑性状态,然后迅速顶锻完成焊接的一种压焊方法。
摩擦焊的特点:
1、由于摩擦,焊件接触表面的氧化膜和杂质被清楚,使焊接接头组织致密,不产生气孔和夹渣等缺陷。
2、即可焊同种金属,更适合于异种金属的焊接。
3、生产率高。
电阻焊
电阻焊是在焊件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热进行焊接的工艺方法。
电阻焊的种类很多,常用的有点焊、缝焊和对焊三种。
一、点焊
点焊是将焊件装配成搭接接头,并压紧在两电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。点焊主要用于薄板焊接。
点焊的工艺过程:
1、预压,保证工件接触良好。
2、通电,使焊接处形成熔核及塑性环。
3、断点锻压,使熔核在压力继续作用下冷却结晶,形成组织致密、无缩孔、裂纹的焊点。
二、缝焊
缝焊是将焊件装配成搭接或对接接头,并置于两滚轮电极之间,滚轮加压焊件并转动,连续或断续送电,形成一条连续焊缝的电阻焊方法。
缝焊主要用于焊接焊缝较为规则、要求密封的结构,板厚一般在3mm以下。
三、对焊
对焊是使焊件沿整个接触面焊合的电阻焊方法。
1、电阻对焊
电阻对焊是将焊件装配成对接接头,使其端面紧密接触,利用电阻热加热至塑性状态,然后断电并迅速施加顶锻力完成焊接的方法,
电阻对焊主要用于截面简单、直径或边长小于20mm和强度要求不太高的焊件。
2、闪光对焊
闪光对焊是将焊件装配成对接接头,接通电源,使其端面逐渐移近达到局部接触,利用电阻热加热这些接触点,在大电流作用下,产生闪光,使端面金属熔化,直至端部在一定深度范围内达到预定温度时,断电并迅速施加顶锻力完成焊接的方法。
闪光焊的接头质量比电阻焊好,焊缝力学性能与母材相当,而且焊前不需要清理接头的预焊表面。闪光对焊常用于重要焊件的焊接。可焊同种金属,也可焊异种金属;可焊0.01mm的金属丝,也可焊20000mm的金属棒和型材。
激光焊
激光焊是以聚焦的激光束作为能源轰击焊件所产生的热量进行焊接的方法。
激光焊的特点:
1、激光焊能量密度大,作用时间短,热影响区和变形小,可在大气中焊接,而不需气体保护或真空环境。
2、激光束可用反光镜改变方向,焊接过程中不用电极去接触焊件,因而可以焊接一般电焊工艺难以焊到的部位。
3、激光可对绝缘材料直接焊接,焊接异种金属材料比较容易,甚至能把金属与非金属焊在一起。
⑺ 钢筋接头百分率是什么意思
用公式可以表示为:
纵向钢筋接头百分率=(钢筋接头处所在的构件的横专截面上其纵属向有接头的钢筋的截面积÷所有纵向钢筋的总截面积)×100%
1)对梁、板类及墙类构件,不宜大于25%;
2)对柱类构件,不宜大于50%;
3)当工程中确有必要增大接头面积百分率时,对梁类构件不应大于50%;对其他构件,可根据实际情况放宽。
纵向受压钢筋搭接接头面积百分率,不宜大于50%。
(2)钢筋机械连接与焊接接头连接区段的长度为35倍d(d为纵向受力钢筋的较大直径),且不小于500mm。同一连接区段内,纵向受力钢筋的接头面积百分率应符合设计要求;当设计无具体要求时,应符合下列规定:
1)受拉区不宜大于50%;受压区不受限制;
2)接头不宜设置在有抗震设防要求的框架梁端、柱端的箍筋加密区;当无法避开时,对等强度高质量机械连接接头,不应大于50%;
⑻ 什么是焊接接头
接头金属及填充金属熔化后,又以较快的速度冷却凝固后形成。焊缝组织是从液体金属结晶的铸态组织,晶粒粗大,成分偏析,组织不致密。但是,由于焊接熔池小,冷却快,化学成分控制严格,碳、硫、磷都较低,还通过渗合金调整焊缝化学成分,使其含有一定的合金元素,因此,焊缝金属的性能问题不大,可以满足性能要求,特别是强度容易达到。焊接接头熔化区和非熔化区之间的过渡部分。熔合区化学成分不均匀,组织粗大,往往是粗大的过热组织或粗大的淬硬组织。其性能常常是焊接接头中最差的。熔合区和热影响区中的过热区(或淬火区)是焊接接头中机械性能最差的薄弱部位,会严重影响焊接接头的质量。焊接接头热影响区。被焊缝区的高温加热造成组织和性能改变的区域。低碳钢的热影响区可分为过热区、正火区和部分相变区。
(1)过热区 最高加热温度1100℃以上的区域,晶粒粗大,甚至产生过热组织,叫过热区。过热区的塑性和韧性明显下降,是热影响区中机械性能最差的部位。
(2)正火区 最高加热温度从Ac3至1100℃的区域,焊后空冷得到晶粒较细小的正火组织,叫正火区。正火区的机械性能较好。
(3)部分相变区最高加热温度从Ac1至Ac3的区域,只有部分组织发生相变, 叫部分相变区。此区晶粒不均匀,性能也较差。 在安装焊接中,熔焊焊接方法应用较多。焊接接头是高温热源对基体金属进行局部加热同时与熔融的填充金属熔化凝固而形成的不均匀体。根据各部分的组织与性能的不同,焊接接头可分为三部分。如图2—l所示,
在焊接发生熔化凝固的区域称为焊缝,它由熔化的母材和填充金属组成。而焊接时基体金属受热的影响(但未熔化)而发生金相组织和力学性能变化的区域称为热影响区。熔合区是焊接接头中焊缝金属与热影响区的交界处,熔合区一彀很窄,宽度为0.1~0.4mm。