导航:首页 > 焊接工艺 > 防弹钢板如何焊接变形

防弹钢板如何焊接变形

发布时间:2023-10-22 18:02:11

『壹』 防弹板用什么焊条或焊丝焊接

焊条用E307-16 焊丝抄用ER307Si 307材料是一种奥氏体不袭锈钢MIG、TIG焊丝,其焊接工艺优良,成形细且光亮,飞溅小而少。
防弹板:碳化硅陶瓷由于硬度高、比重小、弹道性能较好、价格较低,而广泛用于防弹装甲中,如车辆、舰船的防护以及民用保险柜、运钞车的防护中。碳化硅陶瓷的弹道性能优于氧化铝陶瓷,约为碳化硼陶瓷的70-80%,但由于价格较低,特别适合用于用量大,且防护装甲不能过厚、过重的场合。防弹板还包括碳化硅防弹板,复合材料防弹板。

『贰』 如何选购耐磨高锰钢和耐磨高锰钢

一、高锰钢常识。
高锰钢(high manganese steel)是指含锰量在10%以上的合金钢。1882年英国人哈德菲尔德(R.A.Hadfield)第一次获得奥氏体组织的高锰钢,1883年取得了专利,故标准型的Mn13高锰钢又称Hadfield钢。高锰钢依其用途的不同可分为两大类:
1、耐磨钢。含锰10%~15%,碳一般为0.90%~1.50%,大部分在1.0%以上。其化学成分(%):C:0.90~1.50;Mn:10.0~15.0;Si:0.30~1.0;S:≤0.05;P:≤0.10这类高锰钢的用量最多,无磁性。特别适用于冲击磨料磨损和高应力碾碎磨料磨损工况,常用于制造球磨机衬板,锤式破碎机锤头,颚式破碎机颚板,圆锥破碎机轧臼壁、破碎壁,挖掘机斗齿、斗壁,铁道道岔,拖拉机和坦克的履带板等抗冲击、抗磨损的铸件。高锰钢还用于:防弹钢板,保险箱钢板等。
高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组成,有时还含有少量的磷共晶。碳化物数量多时,常在晶界上呈网状出现。因此铸态组织的高锰钢很脆,需进行固溶处理。通常使用的热处理方法是固溶处理,即将钢加热到1050~1100℃,保温消除铸态组织,得到单相奥氏体组织,然后水淬,使此种组织保持到常温。热处理后组织转变为单一的奥氏体或奥氏体加少量碳化物,钢的强度、塑性和韧性均大幅度提高,所以此热处理方法也常称为水韧处理。高锰钢是典型的抗磨钢,铸态组织为奥氏体加碳化物。高锰钢经过固溶处理后还会有少量的碳化物未溶解,当其数量较少符合检验标准时,也可使用。
我国高锰钢铸件的国家标准(GB/T5680-1998)牌号、化学成份及其适用范围是:ZGMn13-1:C 1.00-1.45,Mn 11.0-14.00,Si 0.30-1.00,S≤0.04,P≤0.09,用于低冲击件;ZGMn13-2:C 0.09-1.35,Mn 11.0-14.00,Si 0.30-1.00,S≤0.04,P≤0.07,用于普通件;ZGMn13-3:C 0.95-1.35,Mn 11.0-14.00,Si 0.30-0.80,S≤0.035,P≤0.07,用于复杂件;ZGMn13-4:C 0.09-1.30,Mn 11.0-14.00,Si 0.30-0.80,Cr 1.50-2.50,S≤0.04 P≤0.07,用于高冲击件;ZGMn13-5:C 0.75-1.30 Mn 11.0-14.00,Si 0.30-1.00,Mo 0.90-1.20,S ≤0.04,P≤0.07,用于结构复杂韧性高的冲击铸件。
高锰钢增加Mn的含量有较好的效果。提高了奥氏体的稳定性,阻止碳化物的析出,进而可提高钢的强度和塑性,提高钢的加工硬化能力和耐磨性。比如用于北方的ZGMn18铁道道岔寿命较ZGMn13提高20%-25%。目前市面上的很多耐磨高锰钢厂家为降低成本,只用废锰钢简单回炉,产品含锰量不达标,Cr 、Mo含量更是无从谈起,含硫磷量却过高,而国藩工矿和湘冶机械的“701”牌高锰钢制品均按Mn13Cr2、Mn13Mo、Mn13Cr2Mo的标准铸造,含Mn量高于13%,超高锰钢制品均按Mn18Cr2、Mn18Cr2Mo、Mn18Cr2MoV的标准铸造,含Mn量高于18%,均有效去除了硫磷杂质,添加可以增加耐磨和耐冲击的Cr、Mo、V,甚至含有微量In元素,故产品耐磨性和耐冲击性均达到甚至远远高于Mn13-4,Mn13-5的国家标准(超高锰钢无国家标准超,但锰含量应大于18%),铸造成本虽然大大增加,但在破碎高硬度石料时有极大的优势。
在冲击载荷作用的冷变形过程中,由于位错密度大量增加,位错的交割、位错的塞积及位错和溶质原子的交互作用使钢得到强化。这是加工硬化的重要原因。另一个重要原因则是高锰奥氏体的层错能低,形变时容易出现堆垛层错,从而为ε马氏体的形成和形变孪晶的产生创造了条件。常规成分的高锰钢的形变硬化层中常可以看到高密度位错、位错塞积和缠结。ε马氏体和形变孪晶的出现使钢难以变形,尤其是后者的作用更大。上述各种因素都使高锰钢的硬化层得到很高程度的强化,硬度大幅度提高。
奥氏体组织的高锰钢最重要的特点是在强烈的冲击、挤压条件下,表层迅速发生塑性变形。形变强化的结果,在变形层内有明显的加工硬化现象,表层硬度大幅度提高(可以达到HB(布氏硬度)300-400,经防磨技术处理后,材料表面可达到HB500-550,高冲击载荷时,可以达到HB500-800。随冲击载荷的不同,表面硬化层深度可达10-20mm)。高锰钢在强冲击磨料磨损条件下,有优异的抗磨性能使其在心部仍保持奥氏体良好的韧性和塑性的同时硬化层具有良好的耐磨性能,故常用于制作耐磨件。这是其它材料所不及的。在低冲击工况条件下,因加工硬化效果不明显,高锰钢不能发挥材料的特性。高锰钢的耐磨性只是在具备足以形成加工硬化的条件下才表现出其优越性,其他情况下则很差。由于加工硬化现象,高锰钢极少量用锻压方法加工,应尽量避免对铸件进行加工。铸件上的孔、槽尽可能铸出。但对高锰钢的加工也并非完全不可能。刀具修整一次进刀加工完的可以进行,不可避免的加工应在铸件工艺设计时放大加工量,以使加工的进刀量避开加工硬化层。
高锰钢的铸造性能较好。钢的熔点低(约为1400℃),钢的液、固相线温度间隔较小,(约为50℃),钢的导热性低,因此钢水流动性好,易于浇注成型。高锰钢的线膨胀系数为纯铁的1.5倍,为碳素钢的2倍,故铸造时体积收缩和线收缩率均较大,容易出现应力和裂纹。
为提高高锰钢的性能进行过很多合金化、微合金化、碳锰含量调整和沉淀强化处理等方面的研究,并在生产实践中得到应用。介稳奥氏体锰钢的出现则可较铸钢大幅度降低钢中碳、锰含量并使钢的形变强化速度提高,可适用于高和中低冲击载荷的工况条件,这是高锰钢的新发展。
高锰钢主要用于需要承受冲击、挤压、物料磨损等恶劣工况条件,破坏形式以磨损消耗为主,部分断裂、变形。磨损分为三种:金属构件表面间相互接触并运动的摩擦磨损;其它金属或非金属物料打击金属表面的磨料磨损和流动气体或液体与金属接触导致的冲蚀磨损。耐磨钢的耐磨性能取决于材料本身,而抗磨钢则在不同的工况条件下表现出不同的耐磨性,材料本身和工况条件两者才能决定其耐磨性能。铸造耐磨钢和抗磨钢以奥氏体锰钢为主,在一定的条件下经适当热处理的低合金钢也有很好的效果,石墨钢则用于润滑摩擦的工况条件。
2、无磁钢。这类钢含锰大于17%,碳含量一般均在1.0%以下,常在电机工业中用于制作护环等。这类钢的密度为7.87-7.98g/cm3。由于碳、锰含量均高,钢的导热能力差。导热系数为12.979W/(m·℃),约为碳素钢的1/3。由于钢是奥氏体组织,无磁性,其磁导率μ为1.003-1.03(H/m)。
二、影响高锰钢力学性能的因素。
1、碳化物对性能的影响。降低高锰钢的冲击韧性及抗拉强度。
2、非金属夹杂物对高锰钢性能的影响。在钢液凝固时,大量的氧化锰以非金属夹杂物的形式析出在钢的周界上,降低钢的冲击韧度,并使铸件的热裂纹倾向增大。
3、化学成分的选择及对高锰钢性能的影响。(1)含碳量和含锰量。钢中含碳量过低时,不足以产生有效的加工硬化效果;而当碳含量过高时,又会在铸态中出现大量的碳化物,特别是出现粗大的碳化物,因此为了避免析出碳化物,必须控制含碳量不得过高。为了保证高锰钢的性能,必须有足够的含锰量。含锰量过低时不能形成单一的奥氏体组织;而过高的含锰量也是不必要的,生产中一般规定,WMn控制在11.0%-14.0%,WC控制在0.9%-1.3%。应该指出的是,含锰量与含碳量之间应有适当的搭配,即应有适宜的锰碳比,一般控制在Mn/C=10。(2)含硅量。高锰钢中Wsi的规格含量为0.3%-0.8%,硅会降低碳在奥氏体中的溶解度,促使碳化物析出,使钢的耐磨性和冲击韧度降低,因此硅量应控制在规格下限。 (3)含磷量。高锰钢的规格含量为Wp≤0.7%,熔炼高锰钢时,由于锰铁的含磷量较高,因此一般情况下钢中的含磷量也比较高。因为磷会降低钢的冲击韧度并使铸件容易开裂,所以应尽量降低钢的含磷量。(4)含硫量。高锰钢的规格要求Ws≤0.05%,高锰钢因为含锰量高,使钢中大部分的硫与锰在熔炼过程中相互化合而形成硫化锰(MnS)而进入炉渣中,因而钢中的硫含量经常是较低的(一般不超过0.03%),因此,在高锰钢中硫的有害作用比磷高。
三、高锰钢的铸造工艺。
在高能量冲击的工作条件下,高锰钢与超高锰钢铸件的应用范围是广阔的。许多铸造厂,对生产此类钢种铸件缺乏必要的认识。现对具体操作做简要的说明,供生产者参考。高锰钢铸件多采用砂型造型工艺方案,砂型铸造由于技术成熟,生产效率高而广为推广。也有采用特种铸造的,特种铸造是指在铸型材料、制型方法、金属液充型形式和金属在型中凝固条件等方面与砂型铸造有显著差别的铸造方法。特种铸造包括:熔模铸造、金属型铸造、压力铸造、低压铸造、反压铸造、挤压铸造、离心铸造、消失模铸造、石膏型铸造、陶瓷精密型铸造、连续铸造、真空吸铸、细晶铸造、电磁铸造等。
1 、化学成分。高锰钢按照国家标准分为5个牌号,主要区别是碳的含量,其范围是0.75%-1.45%。受冲击力越大,碳含量越低。锰含量在11.0%-14.0%之间,一般不应低于13%。超高锰钢尚无国标,但锰含量应大于18%。硅含量的高低,对冲击韧度影响较大,故应取下限,以不大于0.5%为宜。低磷低硫是最基本的要求,由于高的锰含量自然起到脱硫作用,故降磷是最要紧的,设法使磷低于0.07%。铬是提高抗磨性的,一般在2.0%左右。钼是提高硬度的,一般在1.0%左右。
2、炉料。入炉材料是由化学成分决定的。主要炉料是优质碳素钢(或钢锭)、高碳锰铁、中碳锰铁、高碳铬铁及高锰钢回炉料。有人误认为只要化学成分合适,就可以多用回炉料,某些厂之所以产品质量不佳,皆出于此。不仅高锰钢、超高锰钢,凡是金属铸件,绝不可以过多的使用回炉料,回炉料不应超过25%。
3 、熔炼。注意加料顺序,无论用中频炉,还是电弧炉熔炼,总是先熔炼碳素钢,而各类锰铁和其他贵重合金材料,要分多次,每次少量入炉,贵重元素在最后加入,以减少烧损。料块应尽量小些,以50-80mm为宜。熔清后,炉温达到1580-1600℃时,要脱氧、脱氢、脱氮,可用铝丝,也可用Si-Ca合金或SiC等材料。将脱氧剂一定压到炉内深处。金属液面此时用覆盖剂盖严,隔断外界空气。还要镇静一段时间,使氧化物、夹杂物有充足时间上浮。然而,不少企业,只将铝丝甚至铝屑,撒再金属液面上,又不加覆盖,白白浪费。在此期间,及时用中碳锰铁来调整锰与碳的含量。 钢液出炉前,将浇包烘烤到400℃以上是十分必要的。在出炉期间用V-Fe、Ti-Fe、稀土等多种微量元素做变质处理,是使一次结晶细化的必要手段,它对产品性能影响是至关重要的。
4、炉料与造型材料。要分清钢种与炉衬的属性。锰钢属碱性,炉衬当然选用镁质材料。捣打炉衬要轮番周而复始换位操作。添加炉衬材料不可过厚,每次80厘米左右为宜,捣毕要低温长时间烘烤。操作时应将炉料置于炉口旁预热,然后用夹子慢慢地将炉料顺炉料置于炉口旁预热,然后用夹子慢慢地将炉料顺炉壁放入。造型材料和涂料也应与金属液属性相一致,或者用中性材料(如铬铁矿砂、棕刚玉等)。若想获得一次结晶细化的集体,采用蓄热量大的铬铁矿砂是正确的,尤其是消失模生产厂,用它将克服散热慢的缺点。
5、铸造工艺设计。高锰钢的特点是凝固收缩大,散热性差,据此,在工艺设计中铸造收缩率取2.5%-2.7%,铸件越长大、越应取上限。型砂与砂芯的退让性一定要好。浇注系统采取开放式。多个分散的内浇道从铸件的薄壁处引入,且成扁而宽的喇叭状,靠近铸件处的截面积大于与横浇道相联的截面积,使金属液快速平稳地注入铸型,防止整个铸型内的温差过大。冒口直径要大于热节直径,紧靠热节,高度是直径的2.5-3.0倍,必须采用热冒口甚至浇冒口合一,让充足的高温金属液来不足铸件在凝固收缩时之空位。将直浇道、冒口位于高处(砂箱有5-8。的斜度)也是正确的。浇注时尽可能低温快浇。一旦凝固,要及时松砂箱。要善于利用冷铁,包括内冷铁于外冷铁,它既细化一次结晶,消除缩孔、缩松,又提高工艺出品率,内冷铁要干净、易熔,用量以少为宜。外冷铁的三维尺寸与冷却物的三维尺寸为0.6-0.7倍的函数关系。过小不起作用,过大造成铸件开裂。铸件在型内要长时间保温,直到低于200℃再开箱。
6 、热处理。热处理开裂,是低温阶段升温过快所致。故正确的操作是350℃以下,升温速度<80℃/h,750℃以下,<100℃/h,且有不同时期的保温。至>750℃时,铸件内呈塑性状态,可以快速升温了。至1050℃时根据铸件的厚度确定保温时间,然后再升到1100℃以上。给出炉降温留有余地然后尽快入水。高温时升温太慢,保温时间太短,出炉后到入水时间间隔过长(不应>0.5min),都影响铸件质量。入水温度应<30℃,淬火后,水温<50℃,水量应不小于铸件重量的8倍。冷水从池下部进入,温水从池顶面流出。铸件在水池中要三个方向不停地一动。
7、切割与焊接。高锰钢重新加热时,在250-800 °C间存在碳化物析出的脆性温度区间,且铸态高锰钢又存在网状碳化物以及铸造应力,因此,焊接性能很差。高锰钢铸件,应在水韧处理后割冒口或缺陷焊补,焊后应快速冷却。因为锰钢热传导性能差,所以在切割浇冒口时应十分注意。最好将铸件置于水中,被切割部分露在水外,切割时留一定量的茬,热处理后磨掉。为消除或尽可能减小热影响区,应用小电流,弱电弧,不连续施焊,小焊道多焊层、或边焊边浇水冷却,始终保持低温度少热量的操作方法。一边焊接一边击打,消除应力。重要铸件必须探伤。 焊条采用高锰钢焊条或奥氏体不锈钢焊条(选用奥氏体基的D256或D266型锰镍焊条),规格细长,φ3.2mm×350mm,外层药皮为碱性。若存在加工硬化层,应在焊前去除。
8、生产的注意事项。生产者要考虑的,不仅仅是降低生产成本,但更重要的是不出废品,最大限度地出优质品,进而最到限度地扩大占领市场份额。这看起来是慢而费,实际上是快而省。

『叁』 弹簧钢与猛钢有什么区别

1、铸造方法不同

锰钢铸件多采用砂型造型工艺方案,砂型铸造由于技术成熟专,生产效率高而属广为推广。也有采用特种铸造的。特种铸造是指在铸型材料、制型方法、金属液充型形式和金属在型中凝固条件等方面与砂型铸造有显著差别的铸造方法。

弹簧钢指的是制造各类弹簧及其他弹性元件的专用合金钢。按性能要求、使用条件可分为普通合金弹簧钢和特殊合金弹簧钢。

2、特点不同

弹簧钢具有优良的综合性能,弹簧钢具有优良的冶金质量(高的纯洁度和均匀性)、良好的表面质量(严格控制表面缺陷和脱碳)、精确的外形和尺寸。

锰钢最重要的特点是在强烈的冲击、挤压条件下,表层迅速发生加工硬化现象,使其在心部仍保持奥氏体良好的韧性和塑性的同时硬化层具有良好的耐磨性能。

3、适用不同

主要的弹簧钢类,用途很广。制造各种弹簧,如汽车、机车、拖拉机的板簧、螺旋弹簧,汽缸安全阀簧及一些在高应力下工作的重要弹簧,磨损严重的弹簧。

锰钢是一种高强度的钢材,主要用于需要承受冲击、挤压、物料磨损等恶劣工况条件,破坏形式以磨损消耗为主,部分断裂、变形,现在普遍适用于发动机下护板。

『肆』 防弹衣的防弹原理是什么

防弹衣及防弹原理
防弹衣概述
防弹衣是“能吸收和耗散弹头、破片动能,阻止穿透,有效保护人体受防护部位的一种服装”。从使用看,防弹衣可分警用型和军用型两种。从材料看,防弹衣可分为软体、硬体和软硬复合体三种。软体防弹衣的材料主要以高性能纺织纤维为主,这些高性能纤维远高于一般材料的能量吸收能力,赋予防弹衣防弹功能,并且由于这种防弹衣一般采用纺织品的结构,因而又具有相当的柔软性,称为软体防弹衣。硬体防弹衣则是以特种钢板、超强铝合金等金属材料或者氧化铝、碳化硅等硬质非金属材料为主体防弹材料,由此制成的防弹衣一般不具备柔软性。软硬复合式防弹衣的柔软性介于上述两种类型之间,它以软质材料为内衬,以硬质材料作为面板和增强材料,是一种复合型防弹衣。
作为一种防护用品,防弹衣首先应具备的核心性能是防弹性能。同时作为一种功能性服装,它还应具备一定的服用性能。
防弹性能
防弹衣的防弹性能主要体现在以下三个方面:(1)防手枪和步枪子弹目前许多软体防弹衣都可防住手枪子弹,但要防住步枪子弹或更高能量的子弹,则需采用陶瓷或钢制的增强板。(2)防弹片各种爆炸物如炸弹、地雷、炮弹和手榴弹等爆炸产生的高速破片是战场上的主要威胁之一。据调查,一个战场中的士兵所面临的威胁大小顺序是:弹片、枪弹、爆炸冲击波和热。所以,要十分强调防弹片的功能。(3)防非贯穿性损伤子弹在击中目标后会产生极大的冲击力,这种冲击力作用于人体所生产的伤害常常是致命的。这种伤害不呈现出贯穿性,但会造成内伤,重者危及生命。所以防止非贯穿性损伤也是防弹衣防弹性能的一个重要方面。
服用性能
防弹衣的服用性能要求一方面是指在不影响防弹能力的前提下,防弹衣应尽可能轻便舒适,人在穿着后仍能较为灵活地完成各种动作。另一方面是服装对“服装-人体”系统的微气候环境的调节能力。对于防弹衣而言,则是希望人体穿着防弹衣后,仍能维持“人-衣”基本的热湿交换状态,尽可能避免防弹衣内表面湿气的积蓄而给人体造成闷热潮湿等不舒适感,减少体能的消耗。此外,由于其特殊的使用环境,防弹衣也要考虑到与其他武器装备的适配性。
防弹衣的发展历程
作为一种重要的个人防护装备,防弹衣经历了由金属装甲防护板向非金属合成材料的过渡,又由单纯合成材料向合成材料与金属装甲板、陶瓷护片等复合系统发展的过程。人体装甲的雏形可追溯至远古,原始民族为防止身体被伤害,曾用天然纤维编织带作为护胸的材料。武器的发展迫使人体装甲必须有相应的进步。早在19世纪末期,用在日本中世纪的铠甲上的真丝也用在了美国生产的防弹衣上。1901年,威廉?麦肯雷总统被暗杀事件发生后,防弹衣引起了美国国会的瞩目。尽管这种防弹衣可防住低速的手枪子弹(弹速为122米/秒),但无法防住步枪子弹。于是,在第一次世界大战中,出现了以天然纤维织物为服装衬里,配以钢板制成的防弹衣。厚实的丝绸服装也一度曾是防弹衣的主要组成部分。但是,真丝在战壕中变质较快,这一缺陷加上防弹能力有限和真丝的高额成本,使真丝防弹衣在第一次世界大战中受到了美国军械部的冷落,未能普及。在第二次世界大战中,弹片的杀伤力增加了80%,而伤员中70%因躯干受伤而死亡。各参战国,尤其是英、美两国开始不遗余力地研制防弹衣。1942年10月,英军首先研制成功了由三块高锰钢板组成的防弹背心。而在1943年度,美国试制和正式采用的防弹衣就有23种之多。这一时期的防弹衣以特种钢为主要防弹材料。1945年6月,美军研制成功铝合金与高强尼龙组合的防弹背心,型号为M12步兵防弹衣。其中的尼龙66(学名聚酰胺66纤维)是当时发明不久的合成纤维,它的断裂强度(gf/d:克力/旦)为5.9~9.5,初始模量(gf/d)为21~58,比重为1.14克/(厘米)3,其强度几乎是棉纤维的二倍。朝鲜战争中,美陆军装备了由12层防弹尼龙制成的T52型全尼龙防弹衣,而海军陆战队装备的则是M1951型硬质“多隆”玻璃钢防弹背心,其重量在2.7~3.6千克之间。以尼龙为原料的防弹衣能为士兵提供一定程度的保护,但体积较大,重量也高达6千克。70年代初,一种具有超高强度、超高模量、耐高温的合成纤维——凯夫拉(Kevlar)由美国杜邦(DuPont)公司研制成功,并很快在防弹领域得到了应用。这种高性能纤维的出现使柔软的纺织物防弹衣性能大为提高,同时也在很大程度上改善了防弹衣的舒适性。美军率先使用Kevlar制作防弹衣,并研制了轻重两种型号。新防弹衣以Kevlar纤维织物为主体材料,以防弹尼龙布作封套。其中轻型防弹衣由6层Kevlar织物构成,中号重量为3.83千克。随着Kevlar商业化的实现,Kevlar优良的综合性能使其很快在各国军队的防弹衣中得到了广泛的应用。Kevlar的成功以及后来的特沃纶(Twaron)、斯派克特(Spectra)的出现及其在防弹衣的应用,使以高性能纺织纤维为特征的软体防弹衣逐渐盛行,其应用范围已不限于军界,而逐渐扩展到警界和政界。然而,对于高速枪弹,尤其是步枪发射的子弹,纯粹的软体防弹衣仍是难以胜任的。为此,人们又研制出了软硬复合式防弹衣,以纤维复合材料作为增强面板或插板,以提高整体防弹衣的防弹能力。综上所述,近代防弹衣发展至今已出现了三代:第一代为硬体防弹衣,主要用特种钢、铝合金等金属作防弹材料。这类防弹衣的特点是:服装厚重,通常约有20千克,穿着不舒适,对人体活动限制较大,具有一定的防弹性能,但易产生二次破片。第二代防弹衣为软体防弹衣,通常由多层Kevlar等高性能纤维织物制成。其重量轻,通常仅为2~3千克,且质地较为柔软,适体性好,穿着也较为舒适,内穿时具有较好的隐蔽性,尤其适合警察及保安人员或政界要员的日常穿用。在防弹能力上,一般能防住5米以外手枪射出的子弹,不会产生二次弹片,但被子弹击中后变形较大,可引起一定的非贯穿损伤。另外对于步枪或机枪射出的子弹,一般厚度的软体防弹衣难以抵御。第三代防弹衣是一种复合式的防弹衣。通常以轻质陶瓷片为外层,Kevlar等高性能纤维织物作为内层,是目前防弹衣主要的发展方向。
防弹衣的防弹机理及其影响因素
防弹衣的防弹机理从根本说有两个:一是将弹体碎裂后形成的破片弹开;二是通过防弹材料消释弹头的动能。美国在二三十年代研制出的首批防弹衣是靠连在结实衣服内的搭接钢板提供防护的。这种防弹衣以及后来类似的硬体防弹衣即是通过弹开弹头或弹片,或者使子弹碎裂以消耗分解其能量而起到防弹作用的。以高性能纤维为主要防弹材料的软体防弹衣,其防弹机理则以后者为主,即利用以高强纤维为原料的织物“抓住”子弹或弹片来达到防弹的目的。研究表明,软体防弹背心吸收能量的方式有以下五种:(1)织物的变形:包括子弹入射方向的变形和入射点临近区域的拉伸变形;(2)织物的破坏:包括纤维的原纤化、纤维的断裂、纱线结构的解体以及织物结构的解体;(3)热能:能量通过摩擦以热能的方式散发;(4)声能:子弹撞击防弹层后发出的声音所消耗的能量;(5)弹体的变形。为提高防弹能力而发展起来的软硬复合式防弹衣,其防弹机理可以用“软硬兼施”来概括。子弹击中防弹衣时,首先与之发生作用的是硬质防弹材料如钢板或增强陶瓷材料等。在这一瞬间的接触过程中,子弹和硬质防弹材料都有可能发生形变或断裂,消耗了子弹的大部分能量。高强纤维织物作为防弹衣的衬垫和第二道防线,吸收、扩散子弹剩余部分的能量,并起到缓冲的作用,从而尽可能地降低了非贯穿性损伤。在这两次防弹过程中,前一次发挥着主要的能量吸收作用,大大降低了射体的侵彻力,是防弹的关键所在。影响防弹衣防弹效能的因素可从发生相互作用的射体(子弹或弹片)和防弹材料两个方面考虑。就射体而言,它的动能、形状和材料是决定其侵彻力的重要因素。普通弹头,尤其是铅芯或普通钢芯弹在接触防弹材料后会发生变形。在这一过程中,子弹被消耗了相当一部分动能,从而有效地降低了子弹的穿透力,是子弹能量吸收机理的一个重要方面。而对于炸弹、手榴弹等爆炸时产生的弹片或子弹形成的二次破片来说,情形就显著不同了。这些弹片的形状不规则,边缘锋利,质量轻,体积小,在击中防弹材料尤其是软体防弹材料后不变形。一般说来,这类碎片的速度也不高,但是量大而密集。软体防弹衣对这类碎片能量吸收的关键在于:破片切割、拉伸防弹织物的纱线并使其断裂,且使织物内部纱线之间和织物不同层面之间的相互作用,造成织物整体形变,在上述这些过程中碎片对外做功,从而消耗自身的能量。在上述两种类型的身体能量吸收过程中,也有一小部分的能量通过摩擦(纤维/纤维、纤维/子弹)转化为热能,通过撞击转化为声能。在防弹材料方面,为了满足防弹衣要最大程度地吸收子弹及其他射体动能的要求,防弹材料必须具有强度高、韧性好、吸能能力强的性能。目前用于防弹衣上,尤其是软体防弹衣上的材料都以高性能纤维为主。这些高性能纤维以高强和高模为重要特征。一些高性能纤维如碳纤维或硼纤维等,虽具有很高的强度,但由于柔韧性不佳,断裂功小,难以纺织加工,以及价格高等原因,基本上不适用于人体防弹衣。具体说来,对防弹织物而言,其防弹作用主要取决于以下方面:纤维的拉伸强力、纤维的断裂伸长和断裂功、纤维的模量、纤维的取向度和应力波传递速度、纤维的细度、纤维的集合方式,单位面积的纤维重量,纱线的结构和表面特征,织物的组织结构,纤维网层的厚度,网层或织物层的层数等。用于抗冲击的纤维材料,其性能取决于纤维的断裂能及应力波传递的速度。应力波要求尽快扩散,而纤维在高速冲击下的断裂能应尽可能提高。材料的拉伸断裂功是材料抵抗外力破坏所具有的能量,它是一个与拉伸强力和伸长变形相关的函数。因此,从理论上说,拉伸强力越高,伸长变形能力也较强的材料,其吸收能量的潜力也越大。但在实践中,用于防弹衣的材料不允许有过大的变形,所以用于防弹衣的纤维必然同时具有较高的抵抗变形的能力,即高模量。纱线的结构对防弹能力的影响是源于不同的纱线织物会造成单纤强力利用率和纱线整体伸长变形能力的差异。纱线的断裂过程首先取决于纤维的断裂过程,但由于它是一个集合体,因此在断裂机理上又有很大的差别。纤维的细度细,则在纱中的相互抱合较为紧贴,同时受力也较为均匀,因而提高了成纱的强度。除此之外,纱线中纤维排列的伸直平行度、内外层转移次数、纱线捻度等都对纱线的机械性能尤其是拉伸强力、断裂伸长等有重要的影响。另外,由于受弹击过程中会产生纱线与纱线、纱线与弹体的相互作用,纱线的表面特征会对以上两种作用产生或加强或削弱的效果。纱线表面油剂、水分的存在会降低子弹或弹片穿透材料的阻力,因此人们往往要对材料施行清洗和干燥等处理,并寻求提高穿透阻力的办法。具有高拉伸强力和高模量的合成纤维通常是高度取向的,所以纤维表面光滑、摩擦系数低。这些纤维用在防弹织物中时,受弹击后纤维间传递能量的能力差,应力波不能迅速扩散,由此也降低了织物阻击子弹的能力。普通的提高表面摩擦系数的方法如起绒、电晕整理等却会降低纤维的强力,而采用织物涂层的方法则易造成纤维与纤维之间的“焊接”,结果使子弹冲击波在纱线横向发生反射,使纤维过早断裂。为了解决这一矛盾,人们想出了各种各样的方法。美国联合信号(AlliedSignal)公司向市场推出一种空气缠绕处理纤维,通过使纤维在纱线内部相互纠缠,从而增加子弹与纤维的接触。在美国专利5035111中推出了一种通过使用皮芯结构纤维提高纱线摩擦系数的方法。这种纤维的“芯”为高强纤维,“皮”则采用了一种强力稍低而具有较高摩擦系数的纤维,后者所占的比重为5%~25%。美国另一专利5255241所发明的方法与此相似,它是在高强纤维的表面涂覆一层薄薄的高摩擦系数聚合物,以提高织物抗金属物穿透的能力。这一发明强调了涂层聚合物与高强纤维表面应有较强的粘附力,否则在受弹击时剥落的涂层材料反而会在纤维之间起固体润滑剂的作用,从而降低纤维表面摩擦系数。除了纤维性质、纱线特征之外,影响防弹衣防弹能力的重要因素还有织物的组织结构。用于软件防弹衣上的织物结构类型包括针织物、机织物、无纬布,针刺非织造毡等。针织物具有较高的延伸率,因而有利于提高服用舒适性。但这种高延伸率用于抗冲击会产生很大的非贯穿性损伤。另外,由于针织物具有各向异性的特征,导致了在不同方向上具有不同程度的抗冲击性。所以,尽管针织物在生产成本和生产效率方面具有优势,但它一般只适用于制造防刺手套、击剑服等,而不能完全用于防弹衣上。目前在防弹衣中应用较为广泛的是机织物、无纬布和针刺非织造毡。这三类织物由于其结构不同,各自的防弹机理也不尽相同,目前弹道学还无法给予充分的解释。一般说来,子弹击中织物后,会在弹着点区域产生一个径向的振动波,并通过纱线高速扩散。当振动波到达纱线的交织点时,一部分波将沿着原先的纱线传到交织点的另一边,另一部分转移到与之交织的纱线内部,还有一部分沿着原先的纱线反射回去,形成反射波。在上述三种织物中,机织物的交织点最多,受弹击后,子弹的动能可通过交织点上纱线的相互作用得以传递,从而使子弹或弹片的冲击力能在较大区域内吸收。但与此同时,交织点在无形中又起了固定端的作用。在固定末端所形成的反射波与原来的入射波会产生同向叠加,使纱线受到的拉伸作用大大增强,在超过其断裂强度后断裂。另外,一些小的弹片还有可能将机织物中的单根纱线推开,从而降低了弹片穿透阻力。在一定范围内,如果提高织物密度,可以减少上述情形出现的可能,并提高机织物的强度,但却会增强应力波反射叠加的负效应。从理论上讲,要获取最好的抗冲击性能是采用单向的、没有交织点的材料。这也正是“Shield”技术的出发点。“Shield”技术即“单向排列”技术,是美国联合信号公司于1988年推出并取得了专利的一种生产高性能非织造防弹复合材料的方法。这一专利技术的使用权也授予了荷兰DSM公司。运用这一技术制成的织物即为无纬布。无纬布是将纤维单向平行排列并用热塑性树脂粘结,同时将纤维进行层间交叉,并以热塑性树脂压制而成。子弹或弹片的大部分能量是通过使冲击点或冲击点附近的纤维伸长断裂而被吸收的。“Shield”织物可最大程度地保持纤维原有的强力,并迅速使能量分散到较大的范围上去,加工工序也较为简单。单层的无纬布叠合后可作为软体防弹衣的主干结构,多层压制则可成为用于防弹加强插板等硬质防弹材料。如果说在上述两类织物中,大部分弹体能量是在冲击点或冲击点附近的纤维处,通过过度拉伸或刺穿使纤维断裂而被吸收的,那么对以针刺非织造毡为结构的织物的防弹机理则无法解释。因为实验已表明,在针刺非织造毡中几乎不发生纤维的断裂。针刺非织造毡由大量短纤构成,不存在交织点,几乎没有应变波的固定点反射。其防弹效果取决于子弹冲击能在毡中的扩散速度。人们观察到,在被弹片击中以后,在碎片模拟弹(FSP)的顶端有一卷纤维状物质。于是预测,弹体或弹片在弹击初始阶段即变钝,从而使其难以穿透织物。许多研究资料都指出,纤维的模量和毡的密度是影响整个织物防弹效果的主要因素。针刺非织造毡主要用于以防弹片为主的军用防弹衣中。

阅读全文

与防弹钢板如何焊接变形相关的资料

热点内容
铝浇铸的鸡蛋托模具30个多少钱 浏览:526
超人钢铁之躯片尾曲叫什么 浏览:170
第三方资管和P2P的区别 浏览:347
铸石板和钢板用什么粘接 浏览:535
钢筋木窗怎么拆 浏览:179
不锈钢与碳钢哪个耐磨性好 浏览:787
天津钢铁集团有限公司科长能挣多少 浏览:562
钢管带水如何开口 浏览:501
9米的32的钢筋多少根一捆 浏览:893
核桃酥用模具怎么做 浏览:646
上水管什么时候用钢管 浏览:807
不锈钢外壳属于什么税收分类 浏览:191
不锈钢管用什么做的 浏览:577
不锈钢管用什么管码 浏览:166
巴氏合金用来制造什么滑动轴承的 浏览:75
重庆的钢材市场在哪里 浏览:157
电阻焊接后为什么变大 浏览:180
钢筋原材使用部位怎么写 浏览:818
普通钢管与铸铁有什么区别 浏览:902
北京哪里有卖不锈钢大门的 浏览:511