Ⅰ 焊接机器人的优点和缺点
随着科技水平的进步,人们对焊接质量的要求也越来越高。自动化生产要求减少人力,提高产品一致性,提高产品质量,更适合大批量生产,降低生产成本,提高生产效率。而人工焊接时,由于受到技术水平、疲劳程度、责任心、生理极限等客观和主观因素的应影响,难以较长时间保持焊接工作的稳定性和一致性。而且,由于焊接恶劣的工作条件,愿意从事手工焊接的人在减少,熟练的技术工人更有短缺的趋势。可以说,焊接机器人很大程度上满足了焊接自动化的要求,泰瑞沃机器人帮你解答
Ⅱ 鐒婃帴璐ㄩ噺鍏澶х己闄
鐒婃帴鏄涓绉嶅父瑙佺殑閲戝睘杩炴帴鏂规硶锛屼絾鐢变簬鎿嶄綔鎶鏈鎴栧叾浠栧洜绱狅紝鐒婃帴杩囩▼涓鍙鑳戒細鍑虹幇涓嶅悓鐨勮川閲忕己闄枫備互涓嬫槸鐒婃帴璐ㄩ噺鍏澶х己闄凤細1.姘斿瓟锛氱剨缂濅腑褰㈡垚鐨勭┖娲烇紝鐢变簬鏈鑳戒粠鐔旇瀺閲戝睘涓鎺掑嚭姘斾綋锛岃岄犳垚鐨勫瓟娲炪傛皵瀛斾細闄嶄綆鐒婃帴寮哄害骞跺奖鍝嶇編瑙傘2.澶规潅鐗╋細鐒婃帴缂濅腑鐨勬潅璐锛屽傞噾灞炵庡睉銆佹补姹″拰灏樺焹绛夈傝繖浜涙潅璐ㄤ細褰卞搷鐒婄紳寮哄害鍜岃愯殌鎬с3.瑁傜汗锛氱剨鎺ユ椂鍥犵儹搴斿姏閫犳垚鐨勯噾灞炲紑瑁傜幇璞★紝甯歌佷簬鐒婃帴鎺ュご澶勩傝傜汗浼氫娇鐒婃帴浠剁殑鏈烘版ц兘涓嬮檷锛屽苟鍙鑳藉艰嚧闆堕儴浠跺け鏁堛4.鐒婄紳涓嶅悎鏍硷細鐢变簬鐒婃帴鎿嶄綔涓嶅綋銆佸伐鑹哄弬鏁颁笉姝g‘绛夊師鍥狅紝瀵艰嚧鐒婃帴缂濇棤娉曢氳繃妫楠屾爣鍑嗙殑鎯呭喌銆傝繖浼氫弗閲嶅奖鍝嶇剨鎺ヤ欢鐨勪娇鐢ㄦц兘銆5.鍠锋簠锛氱剨鎺ヨ繃绋嬩腑锛岀啍姹犵殑閲戝睘婧呭嚭锛屽舰鎴愬皬棰楃矑鎴栭浂鏄熺殑閲戝睘绮掑瓙銆傚柗婧呬細姹℃煋鍛ㄥ洿鐜澧冿紝鐢氳嚦瀵逛汉浣撻犳垚浼ゅ炽6.鍧嶅岋細鐒婃帴浠剁殑缁撴瀯鍦ㄧ剨鎺ヨ繃绋嬩腑鍙鑳戒細鍥犱负鍙楀埌澶栭儴鍔涚殑褰卞搷鑰屽彂鐢熷岄櫡銆傚潔濉屼細褰卞搷鐒婃帴浠剁殑瀹屾暣鎬у拰璐ㄩ噺銆7.璧风毊锛氱剨鎺ユ椂锛岀剨鎺ヨ〃闈㈠嚭鐜版哀鍖栫毊锛岃繖绉嶇幇璞$О涓鸿捣鐨銆傝捣鐨浼氬奖鍝嶇剨鎺ヨ川閲忓拰缇庤傚害銆8.鍑瑰潙锛氱剨鎺ョ紳涓鍑虹幇鐨勫嚬闄凤紝鐢变簬鐒婃帴鎿嶄綔涓嶅綋銆佺啍姹犱笉绋冲畾绛夊師鍥犺屽紩璧枫傚嚬鍧戜細闄嶄綆鐒婄紳鐨勬壙杞借兘鍔涘拰鏈烘版ц兘銆備负浜嗛伩鍏嶈繖浜涚剨鎺ョ己闄凤紝鐒婃帴鎿嶄綔搴旇ヤ弗鏍兼寜鐓х浉鍏宠勮寖鍜屾爣鍑嗚繘琛岋紝骞惰繘琛屽繀瑕佺殑妫楠屽拰娴嬭瘯锛屼互纭淇濈剨鎺ヨ川閲忕﹀悎瑕佹眰銆
Ⅲ 焊接技术存在的缺陷
焊缝缺陷分为六大类:裂纹、孔穴、固体夹杂、未熔合和未焊透、形状缺陷、其它缺陷。
一、 外观缺欠
1、咬边 因焊接造成沿焊趾(或焊根)处出现的低于母材表面的凹陷或沟槽称为咬边。它是由于焊接过程中,焊件边缘的母材金属被熔化后,未及时得到熔化金属的填充所致。咬边可出现于焊缝一侧或两侧,可以是连续的或间断的。
(1)危害:咬边将削弱焊接接头的强度,产生应力集中。在疲劳载荷作用下,使焊接接头的承载能力大大下降。它往往还是引起裂纹的发源地和断裂失效的原因。焊接技术条件中一般规定了咬边的容限尺寸。
(2)形成原因:焊接工艺参数不当,操作技术不正确造成。如焊接电流大,电弧电压高(电弧过长),焊接速度太快。
(3)防止措施:选择适当的焊接电流和焊接速度,采用短弧操作,掌握正确的运条手法和焊条角度,坡口焊缝焊接时,保持合适的焊条离侧壁距离。
2、焊瘤 焊接过程中,在焊缝根部背面或焊缝表面,出现熔化金属流淌到焊缝之外未熔化的母材上所形成的金属瘤称为焊瘤。焊瘤一般是单个的,有时也能形成长条状,在立焊、横焊、仰焊时多出现。
(1)危害:影响焊缝外观,使焊缝几何尺寸不连续,形成应力集中的缺口。管道内部的焊瘤将影响管内介质的有效流通。
(2)形成原因:操作不当或焊接规范选择不当。如焊接电流过小,而立焊、横焊、仰焊时电流过大,焊接速度太慢,电弧过长,运条摆动不正确。
(3)防止措施:调整合适的焊接电流和焊接速度,采用短弧操作,掌握正确的运条手法。
3、凹坑 焊后在焊缝表面或背面形成低于母材表面的局部低洼缺陷。
未焊满 由于填充金属不足,在焊缝表面形成的连续或断续的沟槽。
(1)危害:将会减小焊缝的有效工作截面,降低焊缝的承载能力。
(2)形成原因:焊接电流过大,焊缝间隙太大,填充金属量不足。
(3)防止措施:正确选择焊接电流和焊接速度,控制焊缝装配间隙均匀,适当加快填充金属的添加量。
4、烧穿 焊接过程中熔化金属自坡口背面而流出,形成穿孔的缺陷。常发生于底层焊缝或薄板焊接中。
(1)形成原因:焊接过热,如坡口形状不良,装配间隙太大,焊接电流过大,焊接速度过慢,操作不当,电弧过长且在焊缝处停留时间太长等。
(2)防止措施:减小根部间隙,适当加大钝边,严格控制装配质量,正确选择焊接电流,适当提高焊接速度,采用短弧操作,避免过热。
5、焊缝表面形状及尺寸偏差 焊缝表面形状及尺寸偏差属于形状缺陷,其经常出现的有:对接焊缝超高、角焊缝凸度过大、焊缝宽度不齐、焊缝表面不规则等。
(1)危害:影响焊缝外观质量,易造成应力集中。
(2)形成原因:坡口角度不当,装配间隙不均匀,焊接规范选择不当,焊接电流过大或过小,焊接速度不均匀,运条手法不正确,焊条或焊丝过热等。
(3)防止措施:选择正确焊接规范,适当的焊条及其直径,调整装配间隙,均匀运条,避免焊条和焊丝过热。
二、内部缺欠
1、气孔 焊接过程中熔池金属高温时吸收和产生的气泡,在冷却凝固时未能逸出而残留在焊缝金属内所形成的孔穴,称为气孔。气孔是一种常见的缺陷,不仅出现在焊缝内部与根部,也出现在焊缝表面。焊缝中的气孔可分为球形气孔、条形气孔、虫形气孔以及缩孔等.气孔可以是单个或链状成串沿焊缝长度分布,也可以是密集或弥散状分布。
焊接区中的气体来源:大气的侵入,溶解于母材、焊丝和焊芯中的气体,受潮药皮或焊剂熔化时产生的气体,焊丝或母材上的油污和铁锈等脏物在受热后分解所释放出的气体,焊接过程中冶金化学反应产生的气体。熔焊过程中形成气孔的气体主要有:氢气、一氧化碳和氮气。
氢气孔:多数情况下出现在焊缝表面上,断面形状多呈螺钉状,从焊缝表面上看呈圆喇叭口形,气孔四周内壁光滑。个别情况下也以小圆球形状存在于焊缝内部。
氮气孔:多数以成堆的蜂窝状出现在焊缝表面上。
一氧化碳气孔:多数情况下产生在焊缝内部,沿结晶方向分布,有些象条虫状,表面光滑。
(1)危害:影响焊缝外观质量,削弱焊缝的有效工作截面,降低焊缝的强度和塑性,贯穿性气孔则使焊缝的致密性破坏而造成渗漏。
(2)产生原因:焊接区保护受到破坏;焊丝和母材表面有油污、铁锈和水分;焊接材料受潮,烘焙不充分;焊接电流过大或过小,焊接速度过快;采用低氢型焊条时,电源极性错误,电弧过长,电弧电压偏高;引弧方法或接头不良等。
(3)防止措施:提高操作技能,防止保护气体(焊剂)给送中断;焊前仔细清理母材和焊丝表面油污、铁锈等,适当预热除去水分;焊前严格烘干焊接材料,低氢型焊条必须存放在焊条保温筒中;采用合适的焊接电流、焊接速度,并适当摆动;使用低氢型焊条时应仔细校核电源极性,并短弧操作;采用引弧板或回弧法的操作技术。
2、夹渣 焊后残留在焊缝中的熔渣,称为夹渣。夹渣不同于夹杂,夹杂是指在焊缝金属凝固过程中残留的金属氧化物或来自外部的金属颗粒,如氧化物夹杂、硫化物夹杂、氮化物夹杂和金属夹杂等。夹渣是一种宏观缺陷。夹渣的形状有圆形、椭圆形或三角形,存在于焊缝与母材坡口侧壁交接处,或存在于焊道与焊道之间。夹渣可以是单个颗粒状分布,也可以是长条状或线状连续分布。
(1)危害:减少焊接接头的工作截面,影响焊缝的力学性能(抗拉强度和塑性)。焊接技术条件中允许存在一定尺寸和数量的夹渣。
(2)产生原因:多层焊时,每层焊道间的熔渣未清除干净,焊接电流过小,焊接速度过快;焊接坡口角度太小,焊道成形不良;焊条角度和运条技法不当;焊条质量不好等。
(3)防止措施:每层应认真清除熔渣;选用合适的焊接电流和焊接速度;适当加大焊接坡口角度;正确掌握运条手法,严格控制焊条角度可焊丝位置,改善焊道成形;选用质量优良的焊条。
3、未熔合 熔化焊时,在焊缝金属与母材之间或焊道(层)金属之间未能完全熔化结合而留下的缝隙,称为未熔合。有侧壁未熔合、层间未熔合和焊缝根部未熔合三种形式。
(1)危害:未熔合属于面状缺陷,易造成应力集中,危害性很大(类同于裂纹)。焊接技术条件中不允许焊缝存在未熔合。
(2)产生原因:多层焊时,层间和坡口侧壁渣清理不干净;焊接电流偏小;焊条偏离坡口侧壁距离太大;焊条摆动幅度太窄等。
(3)防止措施:仔细清除每层焊道和坡口侧壁的熔渣;正确选择焊接电流,改进运条技巧,注意焊条摆动。
4、未焊透 焊接时,接头根部未完全熔透的现象,称为未焊透。单面焊时,焊缝熔透达不到根部为根部未焊透;双面焊时,在两面焊缝中间也可形成中间未焊透。
(1)危害:削弱焊缝的工作截面,降低焊接接头的强度并会造成应力集中。焊接技术条件中不允许焊接接头中超过一定容限量的未焊透。
(2)产生原因:坡口钝边太厚,角度太小,装配间隙过小;焊接电流过小,电弧电压偏低,焊接速度过大;焊接电弧偏吹现象;焊接电流过大使母材金属尚未充分加热时而焊条已急剧熔化;焊接操作不当,焊条角度不正确而焊偏等。
(3)防止措施:正确选用和加工坡口尺寸,保证装配间隙;正确选用焊接电流和焊接速度;认真操作,保持适当焊条角度,防止焊偏。
5、焊接裂纹 在焊接应力及其它致脆因素的共同作用下,焊接过程中或焊接后,焊接接头中局部区域(焊缝或焊接热影响区)的金属原子结合力遭到破坏而出现的新界面所产生的缝隙,称为焊接裂纹。它具有尖锐的缺口和长宽比大的特征。焊接裂纹是最危险的缺陷,除降低焊接接头的力学性能指标外,裂纹末端的缺口易引起应力集中,促使裂纹延伸和扩展,成为结构断裂失效的起源。焊接技术条件中是不允许焊接裂纹存在的。
在焊接接头中可能遇到各种类型的裂纹。按裂纹发生部位的焊缝金属中裂纹、热影响区裂纹或熔合线裂纹、根部裂纹、焊趾裂纹、焊道下裂纹和弧坑裂纹。按裂纹的走向有纵向裂纹、横向裂纹和弧坑星形裂纹。按裂纹的尺寸有宏观裂纹和显微裂纹。按裂纹产生的机理有热裂纹、冷裂纹、再热裂纹和层状撕裂。
(1)热裂纹 焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区域产生的焊接裂纹,称为热裂纹,又称高温裂纹。
热裂纹多发生在焊缝金属中,有时也出现在热影响区或熔合线。热裂纹有沿着焊缝纵向,位于结晶中心线的纵向裂纹,也有垂直于焊缝的横向裂纹,或在弧坑中产生的星形弧坑裂纹。热裂纹可以显露于焊缝表面,也可以存在于焊缝内部。其基本形貌特征是:在固相线附近高温下产生,沿奥氏体晶界开裂。热裂纹可分为结晶裂纹、液化裂纹和多边化裂纹三类。
① 结晶裂纹 熔他一次结晶过程中,在液相和固相并存的高温区,焊缝金属沿一次结晶晶界开裂的裂纹,称为结晶裂纹。通常热裂纹多指是结晶裂纹。多数情况下,结晶裂纹的断口呈高温氧化色彩,主要出现在焊缝中,个别情况下也产生在焊接热影响区。
产生条件:低熔点共晶偏析物(FeS)以片状液态薄膜聚集于晶界,焊接拉应力。
防止措施:通过控制产生条件的两方面着手:首先严格控制焊缝金属中C、Si、S、P含量,提高焊缝金属的含Mn量,采用低氢型焊接材料。其次焊前要预热,减小焊后冷却速度,调整焊接规范,适当加大焊接坡口角度,以得到焊缝成形系数大的焊缝,必要时采用多层焊。
② 液化裂纹 焊接过程中,在焊接热循环作用下,存在于母材近缝区金属或多层焊缝的层间金属晶界的低熔点共晶物局部被重新熔化开裂的裂纹,称为液化裂纹。
防止措施:控制和选用C、S、P含量较低而Mn含量较高的母材,焊接时采用低热输入量的焊接规范进行多道焊。
③ 多边化裂纹 焊接时,焊缝或近缝区的金属处于固相线温度以下的高温区域,由于晶格缺陷(如空位和位借)的移动和聚集,形成二次边界,即“多边化边界”,从而引起边界高温强度和塑性降低,沿着多边化的边界产生开裂,称为多边化裂纹。这类裂纹常以任意方向贯穿树枝晶界,断口多呈现为高温低塑性断裂特征。多边化裂纹多发生在单相奥氏体合金的焊缝或近缝区的金属中。
防止措施:在焊缝中加入Mo、W、Ti等细化晶粒的合金元素,阻止形成“多边化边界”,在工艺上采取减小焊接应力的措施。
(2)再热裂纹(SR裂纹) 焊接接头在焊后一定温度范围内再次加热(消除应力热处理或经其它加热过程),在焊接热影响区的粗晶区产生的裂纹,称为再热裂纹或消应力处理裂纹。再热裂纹与热裂纹一样也是一种沿晶界开裂的裂纹,但其断口呈低温氧化色彩。
产生条件:钢中某些沉淀强化元素(如 Mo、 V、 Cr、 Nb等),经历再热(焊后再次加热)敏感温度区域500—700℃,焊接接头存在较高的残余应力和焊缝表面有应力集中的缺口部位(咬边、凹陷等)。
从产生条件可看出,再热裂纹多发生在具有析出沉淀硬化相的低合金高强钢、珠光体耐热钢、奥氏体不锈钢以及镍基合金的焊接接头之中。普通碳素钢中一般不会产生这种裂纹。
防止措施:提高预热温度和采用后热处理,减小焊接应力和过热区硬化;选用高塑性低强度匹配的焊接材料;改进焊接接头设计,尽量不采用高拘束度的焊接节点,消除一切可能引起应力集中的表面缺陷,修磨焊缝呈圆滑过渡;正确选择焊后热处理温度。
(3)冷裂纹 焊接接头在焊后冷却到较低温度下(200℃左右)所产生的焊接裂纹,称为冷裂纹。根据裂纹出现的部位,可分为焊道下裂纹、焊趾裂纹、焊根裂纹、横向裂纹。
产生条件:三个因素共同作用形成冷裂纹,即焊接应力、淬硬组织、扩散氢。冷裂纹 多发生在低合金高强钢、中合金钢、高碳钢的焊接热影响区和熔合区中,个别情况下,也出现在焊缝金属中。
形貌特征:焊后冷却至较低温度下产生,贯穿晶粒开裂,断口呈金属光亮。
根据产生的机理不同,冷裂纹可分为延迟裂纹、淬硬脆化裂纹和低塑性脆化裂纹三类。
① 延迟裂纹(氢致裂纹) 是一种最常见的冷裂纹形态。它是焊后冷却到室温并放置一段时间(延迟潜伏期,几小时、几天、几十天)之后才出现的焊接冷裂纹,具有延迟的性质。因为这种裂纹的产生与焊缝金属中的扩散氢活动密切相关,所以又称氢致裂纹。
② 淬硬脆化裂纹 有些钢种如马氏体不锈钢、工具钢,由于淬硬倾向较大,焊接时易形成淬硬组织,在焊接应力的作用下导致开裂,称之为淬硬脆化裂纹。与延迟裂纹不同的是淬硬脆化裂纹基本上是在焊后立即产生,无延迟期,除了焊接热影响区出现外,有时还会出现在焊缝中。
③ 低塑性脆化裂纹 焊接脆性材料时(如铸铁),当焊后冷却到400℃以下时,由于焊接收缩应变超过材料的本身塑性而导致开裂,称之为低塑性脆化裂纹。它可在焊缝中出现,也可发生在焊接热影响区中。其断口具有脆性断裂的形貌特征。
防止措施:焊前预热,降低冷却速度;选择合适的焊接规范参数;采用低氢型焊接材料,并严格烘干;彻底清除焊丝及母材焊接区域的油污、铁锈和水分,焊后立即后热或焊后热处理,改进接头设计降低拘束应力。
(4)层状撕裂 是一种焊接时沿钢板轧制方向平行于表面呈阶梯状“平台”开裂的冷裂纹。呈穿晶或沿晶开裂的形态特征,通常发生在轧制钢板的靠近熔合线的热影响区中,与熔合线平行形成阶梯式的裂纹。由于不露出表面,所以一般很难发现,只有通过探伤发现,且难以返修。层状撕裂多产生在T形接头和角接接头中,受垂直于钢板表面方向拉伸应力的作用而产生。
产生条件:沿钢板轧制方向存在分层夹杂物(如硫化物等),焊接时产生垂直于厚度方向的焊接应力。
防止措施:严格控制钢材的含硫量,改进接头形式和坡口形状,与焊缝连接的坡口表面预先堆焊过渡层,选用强度等级较低的低氢型焊接材料,采用低焊接热输入和焊接预热。
Ⅳ 为了保证焊缝质量,需要什么措施
焊接从母材和焊条熔化到熔池的形成、停留、结晶,其过程发生了许多的冶金化学反应,这样就影响了焊缝的化学成分、组织、力学性能(强度、硬度、韧性和疲劳极限) 、物理和化学性能,因此,焊缝的质量好坏关系到焊件的质量好坏,会影响到焊件的使用性能。所以我们应该对如何提高焊缝的质量进行分析。
一、熔焊冶金机理
1. 氧化
熔池的体积很小,受电弧加热升温很快,温度可达2000 ℃或更高。在高温下氧气发生分解,成为氧原子,这样,其化学性质非常活泼,容易与金属和碳发生氧化反应,形成大量的金属氧化物和非金属氧化物,反应方程式如下:
Fe + O = FeO Mn + O = MnO
Si + 2O = SiO2 2Cr + 3O = Cr2O3
C + O = CO
这样,Fe 、Mn、Si 、C 等元素大量烧损,使焊缝金属含氧量增加,焊缝力学性能大大下降(如低温冲击韧性明显下降,引起冷脆,使得焊件在低温条件下的安全性降低) 。当焊缝凝固冷却后,FeO 转变为Fe3O4 ,它使焊缝金属的屈服极限、冲击韧度、疲劳极限。SiO2 、MnO 如果没有充足的时间上浮,则成为夹杂物。CO如果没有析出,则成为焊缝中气孔。这些夹杂物和气孔都会降低焊缝的性能。焊接高碳钢和铸铁时容易发生CO 气孔;焊接灰口铸铁时,由于碳、硅的烧损,冷却快,焊缝会成为硬脆的白口组织。
2. 熔池吸气
(1) 吸氮。由于受到高温的影响,氮气也要发生分解,形成氮原子,溶于液态金属中,在冷却过程中要发生相变(奥氏体转变为铁素体) ,氮在固溶体中的溶解度发生突降,最后以Fe4N 析出,由于Fe4N 呈片状夹杂物,虽然使得焊缝金属的硬度增高,但塑性下降。
(2) 吸氢。焊接接头表面附着的油、铁锈所含水分、焊条药皮中配用的有机物等,经高温分解产生氢,氢以原子的形式被液态金属所吸收。当温度降低时,过饱和的氢将从液态金属中析出,成为气孔。当焊缝凝固至室温时,过饱和氢原子扩散到微孔中结合成氢
分子。在微孔中氢的压力逐渐增大,使焊缝产生裂纹。高碳钢和合金钢容易产生氢裂。
3. 焊接应力
由于焊缝不能自由收缩而引起焊接应力,焊接应力可以引起变形,降低结构的承载能力,引发焊接裂纹,甚至造成结构脆断。
二、提高焊缝质量措施
为了保证焊接质量,在焊接过程中,通常采取下列措施:
1.脱氧及掺合金。为了补偿烧损的合金,提高焊缝的力学性能和物理化学性能,在焊条药皮中加入锰铁合金等进行脱氧、脱硫、脱磷、去氢、渗合金等,从而保证焊缝的性能。
Mn + FeO = MnO + Fe Si + 2FeO = SiO2 + 2Fe
MnO + FeS = MnS + FeO CaO + FeS = CaS + FeO
2Fe3P + 5FeO = P2O5 + 11Fe
生成的MnS、CaS、硅酸盐MnO. SiO2 和稳定的复合物(CaO) 3&8226;P2O5 不溶于金属,进入焊渣,最终被清理掉。
2. 焊前进行清理。对坡口以及焊缝两侧的油、锈及其它杂物进行清理;对焊条、焊剂进行烘干,可降低吸氢现象。
3. 合理的焊接顺序和焊接方向。先焊收缩量大的焊缝,以保证焊缝能够自由收缩;拼板时,先焊错开的短焊缝,后焊通直的长焊缝。另外,焊前预热、焊后锤击焊缝金属,使之延伸,可以减少焊接应力。
4. 形成保护气氛( 如CO2 、氩气等) ,限制空气侵入。
5. 控制电弧长度。因为电弧越长, 侵入的氧越多。
61. 对于重要的焊接结构,若焊接接头的组织和性能不能满足要求时,可采取焊后热处理(退火、回火、淬火) 改善焊接接头的组织和性能,同时也可以消除或减少焊接应力。
通过以上措施,可以提高焊缝的质量,同时也使得焊件的质量得到保证。
首先要确定母材的焊接方式,其次是看出现焊接不良的几率,如果普通422不可以,那就选用别的焊条,以及预热,用气焊枪就可以局部预热,并可进行焊后热处理进行应力消除,振动时效和超声冲击处理效果也不错,尤其超声冲击,应力消除率可大100%,就是投入大点,估计要15W左右吧!!!
Ⅳ 影响焊缝质量的因素
焊接过程中的其它工艺因素,如坡口尺寸,间隙大小,电极倾角,工件的斜度,接头的空间位置等对焊缝成形有影响。
1,坡口和间隙坡口或间隙的尺寸增大,则焊缝熔深略有增加,而余高和熔合比显著减小,因此通常用开坡口的方法控制焊缝的余高和调整熔合比。
2,电极(焊丝)倾角
焊丝倾角的方法和大小不同,电弧对熔池的力和热的作用就不同,从而对焊缝成形的影响各异。前倾焊时,电弧力后排熔池金属的作用减弱,熔池底部液体金属增厚,熔深减小,而电弧对熔池前方的母材的预热作用加强,故熔宽增大。焊丝倾角a越大,这一作用越明显。后倾焊时,情况则相反。实际工作中,后倾焊只有在某些特殊情况下使用。例如焊接小直径圆筒形工作的环焊缝等。
3,工作斜度
焊接倾斜的工件时,有上坡焊和下坡焊两种情况。上坡焊时,液体的重力有助于熔池金属排向熔池尾部,因而熔深余高增加,而熔宽减小。若斜角β大于六度至十二度,则焊缝余高过大,两侧出现咬边,成形明显恶化。下坡的情况与上坡焊相反,当β小于六度至八度时,焊缝的熔深和余高均减小,而熔宽略有增加,焊缝成形得到改善,继续增大β角,将会产生未焊透,焊瘤等缺陷。
4,工件厚度和工件散热条件(太长未发表)
五MIG焊缺陷及其成因
1,焊缝金属裂纹
1)母材焊接性不良2)焊丝与母材选配不当3)焊缝深度比太大4)熄弧不佳导致产生弧坑
2,近缝区裂纹
1)母材焊接性不良2)焊丝与母材选配不当(焊缝固相线温度远高于母材固相线温度)3)近缝区过热4)焊接热输入过大
3,焊缝气孔
1)工件清理质量低(表面有氧化膜,油污,水份)2)焊丝清理质量低 3)保护气体保护效果不好 4)电弧电压太高5)喷嘴与工件距离太大
4,咬边
1)焊接速度太高 2)电弧电压太高3)电流过大 4)电弧在熔池边缘停留时间不当5)焊枪角度不正确
5,未熔合
1)零件边缘或其破口表面清理不足 2)热输入不足(电流过小)3)焊接技术不合适4)接头设计不合理
6,未焊透
1)接头设计不合适(坡口太窄)2)焊接技术不合适(电弧应处于熔池的前沿) 3)热输入不合适(电流过小,电压过高) 4)焊接速度过高
7,飞溅
1)电弧电压过低或过高2)焊丝与工件表面清理不良3)送丝不稳定4)导电嘴严重磨损5)焊接动特性不合适(对整流式电源应调节直流电感;对逆变式电源应调整控制回路的电子电抗器)电流的种类和极性影响到工件的热输入,熔滴过渡以及熔池表面氧化膜的去除等。焊丝直径及焊丝伸出长度影响到电弧的集中系数,电弧压力的大小,也影响到焊丝的熔化和熔滴过渡,因此都会影响到焊缝的尺寸。 1, 直流反接时的熔深和熔宽都要比直流正接的大,交流电弧焊接时介于上面两者之间,这是由于熔化极电弧阳极(工件)析出的能量圈较大所致。直流正接时,焊丝为阴极,焊丝的熔化率较大,使焊缝余高较大,焊缝成形不良,熔化极电弧焊一般采用直流反接。 2, 焊丝直径和伸出长度 同样电流下改变焊丝直径(即改变电流密度),焊缝的形状和尺寸将随之改变。
Ⅵ 施工必备钢结构焊接质量缺陷及处理方法
在钢结构的焊接过程中,如果焊接方法不正确,将会导致钢结构出现缺陷。钢结构焊接的缺陷主要有裂纹、未熔合及未焊透、气孔、固体夹杂、咬边、焊瘤、飞溅及电弧不稳定。接下来和大家一起看看这些缺陷是如何形成,又如何处理。
裂纹
原因:裂纹通常有冷、热之分。其中,产生冷裂纹的主要原因是焊接结构设计不合理、焊缝布置不当、焊接工艺措施不合理,如焊前未预热、焊后冷却快等;产生热裂纹的主要原因是母材抗裂性能差、焊接材料质量不好、焊接工艺参数选择不当、焊接内应力过大等。
处理办法:应在裂纹两端钻止裂孔或铲除裂纹的焊缝金属,进行补焊。
预防措施:对于冷裂纹,应选择抗裂性好的钢材,采用低氢或超低氢、低强的焊条,并控制预热温度、线能量,以降低冷裂纹产生倾向;对于热裂纹,应选择含镍量高的钢材,采用精炼的方法,提高钢材的纯度,降低杂质的含量,并控制焊缝的凹度d小于1mm,降低线能量,以降低热裂纹产生倾向。
未熔合及未焊透
原因:未熔合及未焊透的产生原因基本相同,主要是工艺参数、措施及坡口尺寸不当,坡口及焊道表面不够清洁或有氧化皮及焊渣等杂物,焊工技术较差等。
处理方法:对于未熔合应铲除未熔合处的焊缝金属后补焊;对于敞开性好的结构的单面未焊透可在焊缝背面直接补焊;对于不能直接补焊的重要焊件应铲去未焊透的金属,重新焊接。
预防措施:焊前应确定坡口形式和装配间隙,并认真清除坡口边缘两侧的污物;合理选择焊接电流、焊条角度及运条速度;对于导热快、散热面积大的焊件,可在焊前预热或焊接的同时用火焰加热,焊缝的起头处与接头处,可选用长弧预热后再焊接;对于要求全焊透的焊缝,应尽量采用单面焊双面成形工艺;避免产生磁偏吹现象,使电弧不偏于一方,保证各处均匀加热。
气孔
原因:焊接时母材表面有污垢,铁锈、油漆、油渍等;焊条没有烘干,焊条药皮太潮;焊接速度过快,熔化的金属快速凝固而使溶液内气体来不及排出;焊接时操滑毕森作不当,电弧拉得过长,使得有较多气体溶入金属溶液内;母材材质不佳或用错焊条。
处理方法:铲去气孔处的焊缝金属,然后补焊。
预防措施:控制气体的来源焊前严格清理母材及焊材表面的油污、铁锈,对焊接材料进行烘干(一般碱性焊条的烘干温度为350〜450°C,酸性焊条的为200°C左右);正确选择焊接材料、加强对焊接区的保护;排除熔池中已溶入的气体应采用适当的焊接工艺参数,优化焊接工艺,如对低氢型焊条,应尽量采用短弧焊,并适当配合摆动,有利于气体的逸出。
固体夹杂
原因:固体夹杂主要有夹渣和夹钨两种。产生夹渣的主要原因是焊接材料质量不好、焊接电流太小、焊接速度太快、熔渣密度太大、阻碍熔渣上浮、多层焊时熔渣未清理干净等;产生夹钨的主要原因是氩弧焊时钨极与熔池金属接触。
处理方法:对于夹渣应铲除夹渣处的焊缝金属,然后焊补;对于夹钨应挖去夹钨处缺陷金属,重新焊补。
预防措施:焊前应对焊件认真清理,多层焊时须对前一层熔渣清除干净;正确选用焊接规范,焊接电流不应过小,焊接速度不宜过快;正确采用运条方法,且操作时要注意观察熔渣的流动方向,以防止形成固体夹杂。
咬边
原因:焊接工艺参数选择不当,如电流过大、电弧过长等;操作技术不正确,如焊枪角度不对,运条不当等;焊接时电流、电压过信亩高或焊缝空间位置不合适造成熔化金属分布不均;焊条药皮端部的电弧偏吹;焊接零件的位置安放不当等。
处理方法:轻微的、浅的咬边可用机械方法修锉,使其平滑过渡;严重的、深的咬边应进行焊补。
预防措施:应选择适当种类及大小的焊条,并采用正确的焊条角度,适当电流,较慢的速度,较短的电弧及较窄的运行法和运条方法。
焊瘤
原因:焊接工艺参数选择不当,操作技术不佳,或角焊时焊丝对准位置不适当;电流过大,焊接速度太慢、电弧太短、焊道高。
处理方法:可用铲、锉、磨等手工或机械方法除去多余的堆积金属。
预防措施:应选择适当的焊接工艺,保证操作技术正确,并选用正确电流及焊接速度,提高电弧长度,且焊丝不可离交点太远。
飞溅
原因:焊条不良;焊接电流过大或过低;电弧太长,电弧电压太高或太低;焊枪倾斜过度,拖曳角太大;没有采取防护措施,或二氧化碳气体保护焊焊接回路电感量不合适;焊丝过度吸湿。
处理方法:可采用涂白垩粉调整二氧化碳气体保护焊焊接回路的电感。
预防措施:采用干燥合适的焊条、较短的电弧、适数首当的电流,尽可能保持垂直,避免过度倾斜,并注意仓库保管条件及平时的保养、修理。
电弧不稳定
原因:焊枪前端的导电嘴比焊丝心径大太多,导电嘴发生磨损,焊丝发生卷曲,焊丝输送机回转不顺,焊丝输送轮子沟槽磨损,加压轮压紧不良,导管接头阻力太大。
处理方法:应调整使焊丝心径与导电嘴配合,且更换有问题的设备。
预防措施:焊丝心径须与导电嘴配合,且更换导电嘴及输送轮,将焊丝卷曲拉直,并为输送机轴加油,使回转润滑,同时,压力要适当,太松送线不良,太紧焊丝损坏。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
Ⅶ 手工焊接和SMT贴片机的区别
目前手工焊接的瓶颈现状及制约因素:
1.焊接工。
众所周知,焊接加工一方面要求焊工要有熟练的操作技能、丰富的实践经验、稳定的焊接水平;另一方面,焊接又是一种劳动条件差、烟尘多、热辐射大、危险性高的工作。百千成smt工厂说焊接又与其它工业加工过程不一样,手工焊接时,有经验的焊工可以以根据眼睛所观察到的实际焊缝位置适时地调整焊枪的位置、姿态和行走的速度,以适应焊点及焊接轨迹的变化,所以,焊接工的工作是个有一定技术含量的工作岗位,对工厂来说,要招聘一个熟练的焊接工,就目前的工人心态及工厂对员工的成本核算成为一个正负交错对立的局面,这是手工焊接的一个瓶颈。
2.焊接工艺质量。
百千成smt工厂介绍说人工焊接的工艺受到焊接工的工艺水平的限制,焊接工的焊接技能及速度参差不齐,情绪波动有一定的因素影响,每天产品的焊接质量和产量随之而受到影响,这是手工焊接的瓶颈之二
3.焊接辅料成本。
smt工厂焊接工人的技能及情绪或多或少对焊接时所使用的辅料无法估计,使用多少就到仓库去领取多少,管理员无法去量化每天使用焊接辅料,也就是对焊接辅料成本是一个模糊的概念,对生产产品的成本核算也就是没有量化,对客户,对自己的成本来说,是一种不能明说的项目,这是手工焊接的瓶颈之三。
4.焊接效率。
受smt工厂焊接工的技能影响,每天产品焊接的效率也是无法去量化,工厂每天能生产多少产品,产品质量好不好。所谓效率是在什么条件下取得的?咱们理解,焊接的目的是要获得可靠的焊点!因此,咱们所要求的焊接效率应当是以保证获得可靠的焊点为前提;也就是说,咱们在进行高效率焊接的同时,应避免以较高的废品率作为代价。
SMT机器焊接:
随着电子产品的大批量生产,手工采用烙铁工具逐点焊接PCB板上引脚焊点的方法,再也不能适应市场要求、生产效率与产品质量。于是就逐步发明了半自动/全自动群焊(MassSoldering)设备与全自动焊接机。百千成smt工厂说全自动焊接机最早出现在日本,作为黑白/彩色电视机的主要生产设备。八十年代起引进国内,先后有浸焊机、单波峰焊机等。八十年代中期起贴插混装的SMT技术迅速发展,又出现了双波峰焊机。从焊接技术上讲,这些浸焊、单波峰焊、双波峰焊等都属于流动焊接(Flow Soldering),都是熔融流动液态的焊料与待焊件作相对运动,并使之湿润而实现焊接。与手工焊接技术相比,全自动流动焊接技术明显的拥有以下优点:节省电能,节省人力,提高效率,降低成本,提高了外观质量与可靠性,克服人为影响因素,可以完成手工无法完成的工作。
自动焊锡机配合各种工装治具的使用,能有效的满足您对加工的线路PCB,零部件不同焊接要求。