❶ 如何防止焊接变形
焊接变形的产生多数是由于焊接产生的热量不对称,导致的膨胀不一而发生的。
防止焊接变专形的方法措属施一般如下:
1、采用反变形法
2、采用小锤锤击中间焊道
3、采用合理的焊接顺序
4、利用工卡具刚性固定
5、分析回弹常数。
(1)钢材焊接特性不好如何解决扩展阅读:
焊接变形的矫正:
1、机械矫正法
采用压力机、矫正机或手工捶击等机械方法产生新的塑性变形, 以使原开缩短的部分得以延伸, 达到矫正变形的目的。其中多辊平板机适用于薄板拼焊件的矫正。利用窄轮碾压焊缝及其两侧使之延伸来消除变形, 用于焊缝比较规范的薄壳结构。机械矫正法对塑性差的高强钢应慎用。
2、火焰矫正法
利用火焰加热时产生的局部压缩塑性变形, 使较长的金属在冷却后缩短来消除变形。本法简单, 机动灵活, 适用面广。在使用时应控制温度和加热位置。对低碳钢和普通低合金钢常采用600~800℃的加热温度。由于需再次加热, 对合金钢等慎用。
❷ 如何解决钢结构桥梁焊接变形问题
安徽千达钢结构有限公司:
由于钢结构的焊接变形在焊接生产中是不可避免的,因此应在钢结构的生产中根据焊接结构的具体形式选用一种或几种方法以达到控制变形量的目的。阜阳钢结构工程将介绍具体方法如下:
(1)重视钢结构的设计
合理的钢结构设计和焊缝布置对预防和减小焊接变形有着非常重要的作用。设计中,在考虑节约材料、制造方便和使用安全的基础上,还应注意:尽可能减少焊接的数量,减小焊缝的长度;焊缝应尽可能对称布置,并使焊缝与钢结构截面的中性轴相对称;应尽量采用较小的焊缝坡口和尺寸;生产中采用简单的焊接胎具和夹具。
(2)下料时预留焊缝收缩余量
阜阳钢结构工程为了补偿焊接后焊缝的线性缩短,可通过试验方法或对焊缝收缩量进行估计,在备料加工时预先留出收缩余量。由于焊缝的收缩量与很多因素有关,很难用计算的方法来确定其收缩量,只能依靠工艺试验,积累大量的数据来估算变形量。
(3)反变形法
为了抵消钢结构的焊接变形,在进行焊件装配时,预先将焊件向与焊接变形相反的方向进行人为变形,这种方法称为反变形法。由于焊接条件的变化,焊接结构的变形量是不同的。因此,在实际生产中如何确定反变形量是极其重要而又十分复杂的问题。通常只能依赖大量的试验数据或实践经验的积累。一般来说,板材对接焊时,角变形的大小与板材厚度、板材宽度、焊接线能量等因素有关。
(4)选择合理的装配焊接顺序
把钢结构适当地分成部件,分别装配焊接,然后再拼焊成整体,使不对称的焊缝或收缩量较大的焊缝能比较自由地收缩而不影响整体结构。按这个原则生产复杂大型的焊接结构既有利于控制焊接变形,又能扩大作业面,缩短生产周期。
(5)刚性固定法
一般来说,刚性大的焊件焊接变形较小。利用外加刚性拘束以减小焊接变形的方法称为刚性固定法或抑制法。刚性固定法可以利用焊接夹具,在焊件上压置重物或将焊件固定在刚性平台上,它能有效地减小焊接变形。但是淮北钢结构工程必须指出,采用刚性固定法焊接后。一般会在焊 件内产生较大的焊接内应力。因此,对于裂缝倾向较大的工件或焊接材料,不宜采用刚性固定法来控制焊接变形。
以上就是阜阳钢结构工程和大家讲解的如何尽量避免钢结构的焊接应力和变形,希望能对大家有所帮助!本文来自于安徽千达钢结构有限公司:http://www.ahqianda.com/。
❸ 影响钢材可焊接性的主要因素是什么如何影响
化学成分、冶炼轧制状态,热处理状态、组织状态和力学性能等。其中化学成版分(包括杂质的分布与含量)权是主要的影响因素。
一般情况下碳当量小于0.50%时,碳素结构钢和低合金结构钢具有良好的焊接性,随着碳当量的增加,钢材的焊接性逐渐变差。压力容器用碳素结构钢和低合金结构钢的碳含量(质量分数)均不大于0.25%。以Q345R (16MnR)为例,其最大碳当量为0.47%,具有较好的焊接性,只有当厚度大于30mm时,才要求焊前预热至1000℃以上。
(3)钢材焊接特性不好如何解决扩展阅读:
注意事项:
一般针对不同情况应该分别选择相应长弧或短弧能得到较好的焊接质量和工作效率,如打底焊接时为了能得到较好的熔深应该采用短弧操作,填充焊或盖面焊接时为了得到较高的效率和熔宽可以适当加大电弧电压。
施焊时不根据坡口形式、焊接层数、焊接形式、焊条型号等适当调整电弧长度。由于焊接电弧长度使用不当,较难得到高质量的焊缝。
❹ 怎样防止钢结构焊接变形
防止焊接变形的方法
通过以上的分析,我们基本了解焊接变形的原因及变形的种类,针对焊接变形的原因和种类从焊接工艺上进行改进,可以有效防止和减少焊接变形所带来的危害。下面,我们主要介绍几种常见的防止焊接变形的方法。
1. 反变形法
在焊前进行装配时,预置反方向的变形量为抵消(补偿)焊接变形,这种方法叫做反变形法。
为8—12mm厚的钢板V形坡口单面对接焊时,采用反变形法以后,基本消除了角变形。
2. 利用装配和焊接顺序来控制变形;
采用合理的装配和焊接程序来减少变形,这在生产实践中是行之有效的好办法,如图2(a)所示为一箱形梁,由于焊缝不对称,焊后产生下挠弯曲变形。解决办法是由两人或四人,对称地先焊只有两条焊缝的一侧,如图2(b)中焊缝1和1然后就造成了如图2 (c)的上拱变形。由于这两条焊缝焊后增加了箱形梁的刚性。当焊接另一侧的两条焊缝时,如先焊图2(d)中焊缝2和2,最后再焊图2(e)中焊缝3和3,就基本上防止了变形。
有许多结构截面形状对称,焊缝布置也对称,但焊后却发生弯曲或扭曲的变形,这主要是装配和焊接顺序不合理引起的,也就是各条焊缝引起的变形,未能相互抵消,于是发生变形。
焊接顺序是影响焊接结构变形的主要因素之一,安排焊接顺序时应注意下列原则:
1)尽量采用对称焊接。对于具有对称焊缝的工作,最好由成对的焊工对称进行焊接。这样可以使由各焊缝所引起的变形相互抵消一部分。
2)对某些焊缝布置不对称的结构,应先焊焊缝少的一侧。
3)依据不同焊接顺序的特点,以焊接程序控制焊接变形量。常见的焊接顺序有五种,即:
a.分段退焊法
这种方法适用于各种空间的位置的焊接,除立焊外,钢材较厚、焊缝较长时都可以设挡弧板,多人同时焊接。其优点是可以减小热影响区,避免变形。每段长应为0.5—1m。见图2(f)
b.分中分段退焊法
这种方法适用于中板或较薄的钢板的焊接,它的优点是中间散热快,缩小焊缝两端的温度差。焊缝热影响区的温度不至于急剧增高,减少或避免热膨胀变形。这种方法特别适用于平焊和仰焊,横焊一般不采用,立焊根本不能用。见图2(g)
c.跳焊法
这种方法除立焊外,平焊、横焊、仰焊三种方法都适用,多用在6—12mm厚钢板的长焊缝和铸铁、不锈钢、铜的焊接上,可以分散焊缝热量,避免或减小变形。钢材每段焊缝长度在200—400mm之间;铸铁焊件按铸铁焊接规范处理;不锈钢和铜由于导热快,每段长不宜超过200mm (薄板应短些)。
d.交替焊法
这种焊法和跳焊法基本相同,只是每段焊接距离拉长,特别适用于薄板和长焊缝。见图2(i)
e.分中对称法
这种方法适用于焊缝较短的焊件,为了减小变形,由中心分两端一次焊完。见图2(j)
3.刚性固定法
刚性固定法减小变形很有效,且焊接时不必过分考虑焊接顺序。缺点是有些大件不易固定,且焊后撤除固定后,焊件还有少许变形和较大的残余应力。这种方法适用于焊接厚度小于6mm及韧性较好的薄壁材料。如果与反变形法配合使用则效果更好。
对于形状复杂,尺寸不大,又是成批生产的焊件,可设计一个能够转动的专用焊接胎具,既可以防止变形,又能提高生产率。
当工件较大,数量又不多时,可在容易发生变形的部位临时焊上一些支撑或拉杆,增加工件的刚性,也能有效的减少焊接变形。
3. 散热法
散热法又称强迫冷却法,即将焊接处的热量迅速散走,使焊缝附近的金属受热面大大减少,达到减小焊接变形的目的。图 3(a)为水浸法示意图,常用于表面堆焊和焊补。图3(b)是散热法示意图,用紫铜作散热垫,有的还钻孔通冷却水,这些垫板越靠近焊缝效果越好。但散热法比较麻烦,且对于淬火倾向大的钢材不宜采用,否则易裂。
4. 锤击焊缝法
锤击焊缝法,即用圆头小锤对焊缝敲击,可减少焊接变形和应力。因此对焊缝适当锻延,使其伸长来补偿这个缩短,就能减小变形和应力。锤击时用力要均匀,一般采用0.5Kg—1.0Kg的手锤,其端部为圆角(R=3—5mm)。底层和表面焊道一般不锤击,以免金属表面冷作硬化。其余各道焊完一道后立刻锤击,直至将焊缝表面打出均匀致密的点为止。
常见复杂构件防止变形的方法
1. 钢架的焊接
钢架焊接的关键问题,是如何保证强度和防止变形。从工艺上保证强度能适应载荷的变化,其变形量不致影响安装和使用的要求,因此:
1)焊缝的高度和长度,要按图施工。装配误差要小,坡口要清理干净。
2)钢架的焊接一般先焊腹杆与节点板之间的焊缝,然后再焊上、下弦与节点板之间的焊缝,焊接顺序不应集中,而应在节点间间隔跳开焊接。
❺ 经渗碳热处理的钢件与45#钢焊接时焊缝开裂的问题如何解决
一、焊接时低合金钢出现焊接问题
强度级别较低的低合金高强钢,如300~400MPa级,由于钢中合金元素含量较少,其焊接性良好,接近于低碳钢。随着钢中合金元素的增加,强度级别提高,钢的焊接性也逐渐变差,出现的主要问题是:
1、热影响区的淬硬倾向 含碳时较少、强度级别较低的钢种,如09Mn2、09Mn2Si、09MnV钢等,淬硬倾向很小。随着强度级别的提高,淬硬倾向也开始加大,如16Mn、15MnV钢焊接时,快速度冷却会导致在热影响区出现马氏体组织。
2、冷裂纹 低合金高强钢焊接时,热影响区的冷裂纹倾向加大,并且这种冷裂纹往往具有延迟的性质,危害性很大。例如,材料为18MnMoNb钢壁厚 115mm 的一大型容器,由于预热温度不够,焊后在热影响区形成大量冷裂纹。
低合金高强钢的定位焊缝很容易开裂,其原因是由于焊缝尺寸小、长度短、冷却速度快,这种开裂属于冷裂纹性质。
3、热裂纹 一般情况下,强度等级为294~392MPa的热轧、正火钢,热裂倾向较小,但在厚壁压力容器的高稀释率焊道(如根部焊道或靠近坡口边缘的多层埋弧焊焊道)中也会出现热裂纹。电渣焊时,若母材的含碳量偏高并含镍时,电渣焊缝中可能会出现呈八字形分布的热裂纹。
强度等级为800~1176MPa的中碳调质钢(如30CrMnSiA钢),焊接时热裂的敏感性较大。
4、粗晶区脆化 热影响区中被加热至 1100℃ 以上的粗晶区,当焊接线能量过大时,粗晶区的晶粒将迅速长大或出现魏氏组织而使韧性下降,出现脆化段。
13 试述低合金高强钢焊接时的主要工艺措施。
⑴预热 预热是防止裂纹的有效措施,并且还有助于改善接头性能。但预热会恶化劳动条件,使生产工艺复杂化,过高的预热温度还会降低接头韧性。因此,焊前是否需要预热以及预热温度的确定应根据钢材的成分(碳当量)、板厚、结构形状、刚度大小以及环境温度等决定。
⑵焊接线能量的选择 含碳低的热轧钢(09Mn2、09MnNb钢等)以及含碳量偏下限的16Mn钢焊接时,因为这些钢的冷裂淬硬、脆化等倾向小,所以对焊接线能量没有严格的限制。焊接含碳量偏高的16Mn钢时,为降低淬硬倾向,焊接线能量应偏大一点。对于含V、Nb、Ti的钢种,为降低热影响区粗晶脆化所造成的不利影响,应选择较小的焊接线能量。如15MnVN钢的焊接线能量应控制在40~45kJ/cm以下。
对于碳及合金元素含量较高而屈服点为490MPa的正火钢(如18MnMoNb钢等),因淬硬倾向大,应选择较大的焊接线能量,但当采用焊前预热时,为了避免过热倾向,可以适当地减少线能量。
⑶后热及焊后热处理 后热是指焊接结束或焊完一条焊缝后,将焊件立即加热至150~250℃范围内,并保温一段时间,使接头中的氢扩散逸出,防止延迟裂纹产生。
对于厚壁容器、高刚性的焊接结构以及一些在低温、耐蚀条件下工作的构件,焊后应及时进行消除应力的高温回火,其目的是消除焊接残余应力,改善组织。
焊后立即进行高温回火的焊件,无需再进行后热处理。
二、16Mn钢的焊接工艺
16Mn钢属于碳锰钢,碳当量为0.345%~0.491%,屈服点等于343MPa(强度级别属于343MPa级)。16Mn钢的合金含量较少,焊接性良好,焊前一般不必预热。但由于16Mn钢的淬硬倾向比低碳钢稍大,所以在低温下(如冬季露天作业)或在大刚性、大厚度结构上焊接时,为防止出现冷裂纹,需采取预热措施。不同板厚及不同环境温度下16Mn钢的预热温度,见表8。
16Mn钢手弧焊时应选用E50型焊条,如碱性焊条E5015、E5016,对于不重要的结构,也可选用酸性焊条E5003、E5001。对厚度小、坡口窄的焊件,可选用E4315、E4316焊条。
焊接16Mn钢的预热温度
焊件厚度 (mm) 不同气温下的预热温度计(℃)
16以上 不低于- 10℃ 不预热,- 10℃ 以下预热100~150℃
16~24 不低于- 5℃ 不预热,- 5℃ 以下预热100~150℃
25~40 不低于 0℃ 不预热, 0℃ 以下预热100~150℃
40以上 均预热100~150℃
16Mn钢埋弧焊时H08MnA焊丝配合焊剂HJ431(开I形坡口对接)或H10Mn2焊丝配合焊剂HJ431(中板开坡口对接),当需焊接厚板深坡口焊缝时,应选用H08MnMoA焊丝配合焊剂HJ431。
16Mn钢是目前我国应用最广的低合金钢,用于制造焊接结构的16Mn钢均为16MnR和16Mng钢。
三、18MnMoNb钢的焊接工艺
18MnMoNb钢的屈服点等于490MPa(属于490MPa级钢),由于碳及合金钢元素的含量都较高,所以淬火硬倾向及冷裂倾向均比16Mn钢大。焊接工艺要点:
1)除电渣焊外,焊前对焊件应采取预热措施,预热温度控制在150~ 180℃ 。对于刚度较大的接头,预热温度应提高至180~ 230℃ 。焊后或中断焊接时,应立即进行250~ 350℃ 的后热处理。
2)为保证接头性能和质量,应适当控制焊接线能量,如手弧焊时,焊接线能量应控制在24kJ/cm以下;埋弧焊时,焊接线能量应控制在35kJ/cm以下。但焊接线能量不能过小,否则焊接接头易出现淬硬组织和降低韧性。同时,层间温度应控制在预热温度和 300℃ 之间。
4)焊后应进行热处理。电渣焊接头热处理的方式是900~ 980℃ 正火加630~ 670℃ 回火。手弧焊及埋弧焊接头进行消除焊接残余应力的高温回火处理,回火温度比一般钢材回火温度低 30℃ 左右。
18MnMoNb钢手弧焊时应选用E60型焊条,如碱性焊条E6015、E6016,
18MnMoNb钢埋弧焊时H08Mn2MoA焊丝配合焊剂HJ431。
以上是两种典型的低合金钢的焊接方法,焊接工艺参数、焊接材料选择的焊接要点望阅读后能得到一些启发,以后在焊接低合金钢是能派上用处。
❻ 钢材的焊接特性受什么影响
1、材料包括母材和焊接材料。与母材有关的影响因素有母材的化学成分,冶炼轧制状态、热处理状态、组织状态和力学性能等,其中尤以化学成分影响最大。
2、化学成分是钢材焊接性的主要影响因素。如果钢材只是依靠合金元素实现固溶强化,焊接过程中就容易使焊缝金属及热影响区与母材有良好的匹配性能。如果钢材为较复杂的合金系,并通过热处理、变形加工等方式实现固溶强化,则不易获得与母材完全匹配的焊缝金属或接头
3、钢的冶炼方法、轧制工艺及热处理状态等,对焊接性也都有不同程度的影响。例如,近年来研发的各种CF钢(抗裂钢)、TMCP钢(控轧钢)等,就是通过精炼提纯、控制轧制工艺等手段,以使其焊接性有重大改善。
4、焊接材料直接参与焊接过程一系列化学冶金反应,决定着焊缝金属的成分、组织和缺欠的形成。如果选择的焊接材料与母材匹配不当,不仅不能获得满足使用要求的接头,还会引起裂纹等缺欠的产生和脆化等力学性能的变化,所以正确选用焊接材料是保证获得优质焊接接头的重要冶金条件。
(6)钢材焊接特性不好如何解决扩展阅读:
工艺条件因素
工艺条件因素包括焊接方法、焊接参数、预热、后热及焊后热处理等。它们对焊接性的影响,首先在于诸如其焊接热源的特点,功率密度、功率大小等,它们直接决定接头的温度场和热循环的各种参数,例如热输入的大小、高温停留时间、相变区的冷却速度,从而对焊缝及热影响区范围的大小、组织性能和产生缺欠的敏感性等有明显的影响。
其次是诸工艺方面的因素决定了熔池和近缝区的保护方式及冶金条件,例如熔渣保护、渣、气联合保护等都会影响冶金过程;采用焊前预热和焊后缓冷可降低接头的冷却速度,有利于降低接头的淬硬倾向和裂纹敏感性;选择合理的焊接顺序可以改善结构的拘束程度和应力状态。
❼ 施工必备钢结构焊接质量缺陷及处理方法
在钢结构的焊接过程中,如果焊接方法不正确,将会导致钢结构出现缺陷。钢结构焊接的缺陷主要有裂纹、未熔合及未焊透、气孔、固体夹杂、咬边、焊瘤、飞溅及电弧不稳定。接下来和大家一起看看这些缺陷是如何形成,又如何处理。
裂纹
原因:裂纹通常有冷、热之分。其中,产生冷裂纹的主要原因是焊接结构设计不合理、焊缝布置不当、焊接工艺措施不合理,如焊前未预热、焊后冷却快等;产生热裂纹的主要原因是母材抗裂性能差、焊接材料质量不好、焊接工艺参数选择不当、焊接内应力过大等。
处理办法:应在裂纹两端钻止裂孔或铲除裂纹的焊缝金属,进行补焊。
预防措施:对于冷裂纹,应选择抗裂性好的钢材,采用低氢或超低氢、低强的焊条,并控制预热温度、线能量,以降低冷裂纹产生倾向;对于热裂纹,应选择含镍量高的钢材,采用精炼的方法,提高钢材的纯度,降低杂质的含量,并控制焊缝的凹度d小于1mm,降低线能量,以降低热裂纹产生倾向。
未熔合及未焊透
原因:未熔合及未焊透的产生原因基本相同,主要是工艺参数、措施及坡口尺寸不当,坡口及焊道表面不够清洁或有氧化皮及焊渣等杂物,焊工技术较差等。
处理方法:对于未熔合应铲除未熔合处的焊缝金属后补焊;对于敞开性好的结构的单面未焊透可在焊缝背面直接补焊;对于不能直接补焊的重要焊件应铲去未焊透的金属,重新焊接。
预防措施:焊前应确定坡口形式和装配间隙,并认真清除坡口边缘两侧的污物;合理选择焊接电流、焊条角度及运条速度;对于导热快、散热面积大的焊件,可在焊前预热或焊接的同时用火焰加热,焊缝的起头处与接头处,可选用长弧预热后再焊接;对于要求全焊透的焊缝,应尽量采用单面焊双面成形工艺;避免产生磁偏吹现象,使电弧不偏于一方,保证各处均匀加热。
气孔
原因:焊接时母材表面有污垢,铁锈、油漆、油渍等;焊条没有烘干,焊条药皮太潮;焊接速度过快,熔化的金属快速凝固而使溶液内气体来不及排出;焊接时操滑毕森作不当,电弧拉得过长,使得有较多气体溶入金属溶液内;母材材质不佳或用错焊条。
处理方法:铲去气孔处的焊缝金属,然后补焊。
预防措施:控制气体的来源焊前严格清理母材及焊材表面的油污、铁锈,对焊接材料进行烘干(一般碱性焊条的烘干温度为350〜450°C,酸性焊条的为200°C左右);正确选择焊接材料、加强对焊接区的保护;排除熔池中已溶入的气体应采用适当的焊接工艺参数,优化焊接工艺,如对低氢型焊条,应尽量采用短弧焊,并适当配合摆动,有利于气体的逸出。
固体夹杂
原因:固体夹杂主要有夹渣和夹钨两种。产生夹渣的主要原因是焊接材料质量不好、焊接电流太小、焊接速度太快、熔渣密度太大、阻碍熔渣上浮、多层焊时熔渣未清理干净等;产生夹钨的主要原因是氩弧焊时钨极与熔池金属接触。
处理方法:对于夹渣应铲除夹渣处的焊缝金属,然后焊补;对于夹钨应挖去夹钨处缺陷金属,重新焊补。
预防措施:焊前应对焊件认真清理,多层焊时须对前一层熔渣清除干净;正确选用焊接规范,焊接电流不应过小,焊接速度不宜过快;正确采用运条方法,且操作时要注意观察熔渣的流动方向,以防止形成固体夹杂。
咬边
原因:焊接工艺参数选择不当,如电流过大、电弧过长等;操作技术不正确,如焊枪角度不对,运条不当等;焊接时电流、电压过信亩高或焊缝空间位置不合适造成熔化金属分布不均;焊条药皮端部的电弧偏吹;焊接零件的位置安放不当等。
处理方法:轻微的、浅的咬边可用机械方法修锉,使其平滑过渡;严重的、深的咬边应进行焊补。
预防措施:应选择适当种类及大小的焊条,并采用正确的焊条角度,适当电流,较慢的速度,较短的电弧及较窄的运行法和运条方法。
焊瘤
原因:焊接工艺参数选择不当,操作技术不佳,或角焊时焊丝对准位置不适当;电流过大,焊接速度太慢、电弧太短、焊道高。
处理方法:可用铲、锉、磨等手工或机械方法除去多余的堆积金属。
预防措施:应选择适当的焊接工艺,保证操作技术正确,并选用正确电流及焊接速度,提高电弧长度,且焊丝不可离交点太远。
飞溅
原因:焊条不良;焊接电流过大或过低;电弧太长,电弧电压太高或太低;焊枪倾斜过度,拖曳角太大;没有采取防护措施,或二氧化碳气体保护焊焊接回路电感量不合适;焊丝过度吸湿。
处理方法:可采用涂白垩粉调整二氧化碳气体保护焊焊接回路的电感。
预防措施:采用干燥合适的焊条、较短的电弧、适数首当的电流,尽可能保持垂直,避免过度倾斜,并注意仓库保管条件及平时的保养、修理。
电弧不稳定
原因:焊枪前端的导电嘴比焊丝心径大太多,导电嘴发生磨损,焊丝发生卷曲,焊丝输送机回转不顺,焊丝输送轮子沟槽磨损,加压轮压紧不良,导管接头阻力太大。
处理方法:应调整使焊丝心径与导电嘴配合,且更换有问题的设备。
预防措施:焊丝心径须与导电嘴配合,且更换导电嘴及输送轮,将焊丝卷曲拉直,并为输送机轴加油,使回转润滑,同时,压力要适当,太松送线不良,太紧焊丝损坏。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd